scholarly journals Tissue-specific Transcriptome Analysis Reveals Lignocellulose Synthesis Regulation in Elephant Grass (Pennisetum Purpureum Schum.)

2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background:The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. Because the genome of elephant grass has not been deciphered, the study of its lignocellulose synthesis pathway and key genes is limited. Results:In this study, RNA sequencing (RNA-seq) combining with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials, were applied to reveal the genes regulating cellulose and lignin synthesis. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2 and T3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the two most abundant metabolic pathways were phenylpropanemetabolism, starch and sucrose metabolism, which closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly correlated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. In addition, the expression of CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H, CAD and CCR at different development stages were analyzed, and found that the content of lignocellulose was correlated with the expression levels of these structural genes. Conclusions:This study not only provides new insights into the molecular mechanisms of cellulose and lignin synthesis pathways in elephant grass, but also offers a new and extensive list of candidate genes for more specialized functional studies in the future which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.

2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.Results: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.Conclusions: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.Results: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.Conclusions: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.Results: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.Conclusions: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.Results: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.Conclusions: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered. Results In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes. Conclusions This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered.Results: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly associated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes.Conclusions: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


IAWA Journal ◽  
2001 ◽  
Vol 22 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Wolfgang Gindl

The intra-annual distribution of cell-wall lignin concentration was determined in Austrian pine tree rings and compared with tracheid diameter, lumen width, cell wall thickness and proportion of cell wall area. Lignin concentration was highly correlated with all tracheid dimensions, but only the proportion of cell wall area exhibited a direct statistically significant relationship. Since cell dimensions in Austrian pine are subjected to the indirect and direct influences of the water status of trees, the negative correlation between cellular lignin content and the proportion of cell wall area is attributed to an indirect effect of water stress on lignification in pine tracheids.


CERNE ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Marcela Freitas Andrade ◽  
Jorge Colodette

ABSTRACT The main goal of this study was to characterize chemically and morphologically elephant grass (Pennisetum purpureum), and evaluate the potential of its fibers for production of printing and writing paper grade pulp. The elephant grass was chemically and morphologically characterized and cooked by the soda process to two different degrees of delignification (kappa 17.5 and 10.6). The resulting pulps were fully bleached by the O-D*-(EP)-D sequence and characterized for their beatability, drainability and physical-mechanical properties. The lignin content (20.2%) was low, indicating that this grass should be easier to pulp. The morphological analyses of the elephant grass indicated a short fiber material, similar to hardwoods. The soda pulp from elephant grass cooked to kappa number 17.5 presented higher screened yield than 10.6 kappa pulp, with alkali demands of 15.0% and 20.0%, respectively. The total active chlorine required by the 17.5 and 10.6 kappa pulps, were 42.1 and 35.1 kg/odt pulp, respectively, to achieve an ISO brightness of approximately 90.0%. The bleached soda pulps cooked to 17.5 and 10.6 kappa number showed similar refinability and resistance to drainage, but the tensile and burst index were highest for the 17.5 kappa pulp at beating energy consumptions in the range of 0-6 Wh. It was concluded that both 10.6 and 17.5 kappa pulps from elephant grass are suitable for the production of printing and writing paper grade pulps, but the highest kappa 17.5 pulp is more economically attractive given its highest pulping yield, despite the significantly increased of chemical demand for bleaching A produção de papel para impressão e escrita Grau de celulose a partir de capim-elefante.


2017 ◽  
Vol 52 (12) ◽  
pp. 1268-1275 ◽  
Author(s):  
Leonardo Fiusa de Morais ◽  
João Carlos de Carvalho Almeida ◽  
Delci de Deus Nepomuceno ◽  
Mirton José Frota Morenz ◽  
Bárbara Maria Gomes de Melo ◽  
...  

Abstract: The objective of this work was to evaluate the use of soybean (Glycine max), pigeon pea (Cajanus cajan), and jack bean (Canavalia ensiformis) as urease sources for elephant grass (Pennisetum purpureum) hay ammoniated with urea. The experimental design was completely randomized in a double factorial arrangement with one additional treatment: 4 urease source levels x 3 urease sources + 1 control. Chemical-bromatological analyses and carbohydrate fractionation were performed in the hay, and cumulative gas production in vitro was determined. There were interactions between urease level and source for neutral detergent fiber and acid detergent fiber, in which 1 and 2% jack bean lowered acid detergent fiber values, and 2% jack bean and 3% soybean reduced lignin content. The addition of milled legume grains reduces fiber components and increases non protein nitrogen content in elephant grass hay ammoniated with urea. Adding 4% milled soybean increases gas production in the soluble fraction.


2021 ◽  
Vol 22 (14) ◽  
pp. 7615
Author(s):  
Fuhua Fan ◽  
Zijing Zhou ◽  
Huijuan Qin ◽  
Jianhui Tan ◽  
Guijie Ding

Brassinosteroids (BRs) are known to be essential regulators for wood formation in herbaceous plants and poplar, but their roles in secondary growth and xylem development are still not well-defined, especially in pines. Here, we treated Pinus massoniana seedlings with different concentrations of exogenous BRs, and assayed the effects on plant growth, xylem development, endogenous phytohormone contents and gene expression within stems. Application of exogenous BR resulted in improving development of xylem more than phloem, and promoting xylem development in a dosage-dependent manner in a certain concentration rage. Endogenous hormone determination showed that BR may interact with other phytohormones in regulating xylem development. RNA-seq analysis revealed that some conventional phenylpropanoid biosynthesis- or lignin synthesis-related genes were downregulated, but the lignin content was elevated, suggesting that new lignin synthesis pathways or other cell wall components should be activated by BR treatment in P. massoniana. The results presented here reveal the foundational role of BRs in regulating plant secondary growth, and provide the basis for understanding molecular mechanisms of xylem development in P. massoniana.


Sign in / Sign up

Export Citation Format

Share Document