scholarly journals Simple and Cost-effective Microfabrication of Flexible and Stretchable Electronics for Wearable Multi-functional Electrophysiological Monitoring

Author(s):  
Chae Hyun Kim ◽  
Dong Hyeon Lee ◽  
Jiman Youn ◽  
Hongje Lee ◽  
Joonsoo Jeong

Abstract The fabrication of flexible and stretchable electronics is a critical requirement for the successful application of wearable healthcare devices. Although such flexible electronics have been commonly fabricated by microelectromechanical system (MEMS) technologies, they require a specialised equipment for vacuum deposition, photolithography, and wet and dry etching. A photolithography-free simple patterning method using a desktop plotter cutter has been proposed; however, the metal formation and electrode opening still rely on the MEMS technology. To address this issue, we demonstrate a simple, rapid, cost-effective, and a complete microfabrication process for flexible and stretchable sensor platforms encompassing conductor formation and patterning to encapsulate and open sensing windows, which only require an economic plotter cutter and readily available supplies. Despite its simplicity, the proposed process could stably create microscale features of 200 μm wide conductor lines and 1 mm window openings, which are in the useful range for various wearable applications. The feasibility of the simple fabrication of multi-functional sensors for various physiological monitoring applications was successfully demonstrated in electrochemical (glucose), electrical (electrocardiogram), mechanical (strain), and thermal (body temperature) modalities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chae Hyun Kim ◽  
Dong Hyeon Lee ◽  
Jiman Youn ◽  
Hongje Lee ◽  
Joonsoo Jeong

AbstractThe fabrication of flexible and stretchable electronics is a critical requirement for the successful application of wearable healthcare devices. Although such flexible electronics have been commonly fabricated by microelectromechanical system (MEMS) technologies, they require a specialised equipment for vacuum deposition, photolithography, and wet and dry etching. A photolithography-free simple patterning method using a desktop plotter cutter has been proposed; however, the metal formation and electrode opening still rely on the MEMS technology. To address this issue, we demonstrate a simple, rapid, cost-effective, and a complete microfabrication process for flexible and stretchable sensor platforms encompassing conductor formation and patterning to encapsulate and open sensing windows, which only require an economic plotter cutter and readily available supplies. Despite its simplicity, the proposed process could stably create microscale features of 200 μm wide conductor lines and 1 mm window openings, which are in the useful range for various wearable applications. The feasibility of the simple fabrication of multi-functional sensors for various physiological monitoring applications was successfully demonstrated in electrochemical (glucose), electrical (electrocardiogram), mechanical (strain), and thermal (body temperature) modalities.


Author(s):  
Pengcheng Wu ◽  
Lu-yu Zhou ◽  
Shang Lv ◽  
JianZhong Fu ◽  
Yong He

Liquid-metal (LM)-based flexible and stretchable electronics have attracted widespread interest in soft robotics, self-powered devices and electronic skins. Although nanometerization can facilitate deposition and patterning of LMs onto substrates, subsequent...


Author(s):  
I-Hsuan Chen ◽  
Jung-Hsien Chang ◽  
Ren-Jie Xie ◽  
Chia-Hui Tseng ◽  
Sheng-Rong Hsieh ◽  
...  

Abstract In this study, the easy-to-operate silver mirror reaction (SMR) was used for metallizing chromatography paper. The SMR-metallized paper was characterized by water contact angle measurements, a surface profiler, X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction, and electrical resistance measurement. The characterization results show that Ag was successfully synthesized on cellulose fibers and was electrically conductive after cyclic bending. Moreover, this SMR-metallized paper was used as electrodes for fabricating a supercapacitor. This SMR-metallized paper could be used for realizing cost-effective flexible electronics applied in on-site biochemical sensing in resource-limited settings.


2021 ◽  
Author(s):  
Yogeenth Kumaresan ◽  
Nivasan Yogeswaran ◽  
Luigi G. Occhipinti ◽  
Ravinder Dahiya

Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.


Sign in / Sign up

Export Citation Format

Share Document