Stretchable Systems

2021 ◽  
Author(s):  
Yogeenth Kumaresan ◽  
Nivasan Yogeswaran ◽  
Luigi G. Occhipinti ◽  
Ravinder Dahiya

Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.

Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Soft Matter ◽  
2021 ◽  
Author(s):  
Yang Yu ◽  
Fengjin Xie ◽  
Xinpei Gao ◽  
Liqiang Zheng

The next generation of high-performance flexible electronics has put forward new demands to the development of ionic conductive hydrogels. In recent years, many efforts have been made toward developing double-network...


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (9) ◽  
pp. 32-39 ◽  
Author(s):  
Jin-Ho Choy ◽  
Soon-Jae Kwon ◽  
Seong-Ju Hwang ◽  
Eue-Soon Jang

Recently, inorganic/inorganic and organic/inorganic heterostructured materials have attracted considerable research interest, due to their unusual physicochemical properties, which cannot be achieved by conventional solid-state reactions. In order to develop new hybrid materials, various synthetic approaches, such as vacuum deposition, Langmuir–Blodgett films, selfassembly, and intercalation techniques, have been explored. Among them, the intercalation reaction technique—that is, the reversible insertion of guest species into the two-dimensional host lattice—is expected to be one of the most effective tools for preparing new layered heterostructures because this process can provide a soft chemical way of hybridizing inorganic/inorganic, organic/inorganic, or biological/inorganic compounds. In fact, the intercalation/deintercalation process allows us to design high-performance materials in a solution at ambient temperature and pressure, just as “soft solution processing” provides a simple and economical route for advanced inorganic materials by means of an environmentally benign, lowenergy method. These unique advantages of the intercalation technique have led to its wide application to diverse fields of the solid-state sciences, namely, secondary (rechargeable) batteries, electrochromic systems, oxidation–reduction catalysts, separating agents, sorbents, and so on. Through these extensive studies, many kinds of low-dimensional compounds have been developed as host materials for the intercalation reaction, including graphite, transition-metal chalcogenides, transitionmetal oxides, aluminosilicates, metal phosphates, metal chalcogenohalides, and so on. Recently, the area of intercalation chemistry has been extended to high-Tc superconducting copper oxides, resulting in remarkable structural anisotropy.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27860-27867
Author(s):  
Xinxian Zhong ◽  
Quanyuan Mao ◽  
Zesheng Li ◽  
Zhigao Wu ◽  
Yatao Xie ◽  
...  

Biomass-derived heteroatom self-doped porous carbons are expected to become ideal active materials for high performance supercapacitor.


2019 ◽  
Author(s):  
◽  
Jheng-Wun Su

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Learning from nature livings, especially those that can respond to the stimuli and change the shape, is attracting increasing interests in a wide variety of research fields. There is a significant need of developing synthetic materials that can mimic these living systems to show dynamic and adaptive shape-changing functions. Although various fabrication methods including molding, micro-fabrication and photolithography have been developed to fabricate the dynamic materials, they all have shown some limits. At present, 3D printing is a promising technique, which provides a cost effective, accurate and customized method to form 3D structures. The recently new emerging technique, 4D printing, which employs the 3D printing to print the active materials for dynamic 3D structures, shows a great potential for various applications such as tissue engineering, flexible electronics, and soft robotics. Despite much recent progress, this technology and its application in 3D dynamic structure fabrication is still in its infancy. My Ph.D. dissertation focuses on 4D printing of programmable polymeric materials that exhibits complex, reversible, shape transformations as well as enriching the printable material library by exploring various active materials for 4D printing technology. Chapter 1 introduces the current development of active materials and methodologies. Much attention is paid to the recent progress and its merits and demerits. Chapter 2 presents a simple and inexpensive 4D printing of waterborne polyurethane paint (PU) composites that are fabricated by mixing PU with micro-size preswollen carboxymethyl cellulose (CMC) and silicon oxide nanoparticle (NPs), respectively. Chapter 3 presents the 4D printing of a commercial polymer, SU-8, which has yet been reported in this field. The self-morphing behaviors of the printed SU-8 structures are induced by spatial control of swelling medium inside the SU-8 matrix. In Chapter 4, machine learning algorithms are applied to evaluate the shape-morphing behaviors of 4D printed objects. After the model optimization by tuning the hyperparameters the obtained machine learning models enable to accurately predict the final curvatures and curving angles of the 4D printed SU-8 structures from given input geometrical information. This initial success show that these data-driven surrogate models can well circumvent the challenge of human centered trial-and-error process in optimizing the printed structures, thereby pushing the research in 4D printing to a new height.


Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing combines the advantages of several computing paradigms and introduces ubiquity in the provisioning of services such as software, platform, and infrastructure. Data centers, as the main hosts of cloud computing services, accommodate thousands of high performance servers and high capacity storage units. Offloading the local resources increases the energy consumption of the transport network and the data centers although it is advantageous in terms of energy consumption of the end hosts. This chapter presents a detailed survey of the existing mechanisms that aim at designing the Internet backbone with data centers and the objective of energy-efficient delivery of the cloud services. The survey is followed by a case study where Mixed Integer Linear Programming (MILP)-based provisioning models and heuristics are used to guarantee either minimum delayed or maximum power saving cloud services where high performance data centers are assumed to be located at the core nodes of an IP-over-WDM network. The chapter is concluded by summarizing the surveyed schemes with a taxonomy including the cons and pros. The summary is followed by a discussion focusing on the research challenges and opportunities.


Sign in / Sign up

Export Citation Format

Share Document