scholarly journals Near Field Condensation

2020 ◽  
Author(s):  
Xiao Yan ◽  
Feipeng Chen ◽  
Chongyan Zhao ◽  
Yimeng Qin ◽  
Xiong Wang ◽  
...  

Abstract Dropwise condensation represents the upper limit of condensation heat transfer. Promoting dropwise condensation relies on surface chemical functionalization, and is fundamentally limited by the maximum droplet departure size. A century of research has focused on active and passive methods to enable the removal of ever smaller droplets. However, fundamental contact line pinning limitations prevent gravitational and shear-based removal of droplets smaller than 250 µm. Here, we break this limitation through near field condensation. By de-coupling nucleation, droplet growth, and shedding via droplet transfer between parallel surfaces, we enable the control of droplet population density and removal of droplets as small as 20 µm without the need for chemical modification or surface structuring. We identify droplet bridging to develop a regime map, showing that rational wettability contrast propels spontaneous droplet transfer from condensing surfaces ranging from hydrophilic to hydrophobic. To demonstrate efficacy, we perform condensation experiments on surfaces ranging from hydrophilic to superhydrophobic. The results show that near field condensation with optimal gap spacing can limit the maximum droplet sizes and significantly increase the population density of sub-20 µm droplets. Theoretical analysis and direct numerical simulation confirm the breaking of classical condensation heat transfer paradigms through enhanced heat transfer. Our study not only pushes beyond century-old phase change limitations, it demonstrates a promising method to enhance the efficiency of applications where high, tunable, gravity-independent, and durable condensation heat transfer is required.

2011 ◽  
Vol 199-200 ◽  
pp. 1604-1608
Author(s):  
Yun Fu Chen

For finding influence of the condensing surface to dropwise condensation heat transfer, a fractal model for dropwise condensation heat transfer has been established based on the self-similarity characteristics of droplet growth at various magnifications on condensing surfaces with considering influence of contact angle to heat transfer. It has been shown based on the proposed fractal model that the area fraction of drops decreases with contact angle increase under the same sub-cooled temperature; Varying the contact angle changes the drop distribution; higher the contact angle, lower the departing droplet size and large number density of small droplets; dropwise condensation translates easily to the filmwise condensation at the small contact angle ;the heat flux increases with the sub-cooled temperature increases, and the greater of contact angle, the more heat flux increases slowly.


Author(s):  
Enakshi Wikramanayake ◽  
Vaibhav Bahadur

Abstract Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.


2020 ◽  
Vol 6 (2) ◽  
pp. eaax0746 ◽  
Author(s):  
Hyeongyun Cha ◽  
Hamed Vahabi ◽  
Alex Wu ◽  
Shreyas Chavan ◽  
Moon-Kyung Kim ◽  
...  

Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θa = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.


Author(s):  
Fangyu Cao ◽  
Sean Hoenig ◽  
Chien-hua Chen

The increasing demand of heat dissipation in power plants has pushed the limits of current two-phase thermal technologies such as heat pipes and vapor chambers. One of the most obvious areas for thermal improvement is centered on the high heat flux condensers including improved evaporators, thermal interfaces, etc, with low cost materials and surface treatment. Dropwise condensation has shown the ability to increase condensation heat transfer coefficient by an order of magnitude over conventional filmwise condensation. Current dropwise condensation research is focused on Cu and other special metals, the cost of which limits its application in the scale of commercial power plants. Presented here is a general use of self-assembled monolayer coatings to promote dropwise condensation on low-cost steel-based surfaces. Together with inhibitors in the working fluid, the surface of condenser is protected by hydrophobic coating, and the condensation heat transfer is promoted on carbon steel surfaces.


1985 ◽  
Vol 51 (472) ◽  
pp. 4055-4062 ◽  
Author(s):  
Tsutomu HOSOKAWA ◽  
Tsutomu KAWAI ◽  
Akihiko FUJIO ◽  
Genichi KOMATSU

Sign in / Sign up

Export Citation Format

Share Document