scholarly journals Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants

Author(s):  
Satoshi Ikegame ◽  
Mohammed Siddiquey ◽  
Chuan-Tien Hung ◽  
Griffin Haas ◽  
Luca Brambilla ◽  
...  

Abstract The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia outbreak in Wuhan, China1,2. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 ‘variants of concern’ (VOC) across diverse geographic locales have prompted re-evaluation of strategies to achieve universal vaccination3. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic4–8. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus (VSV) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV-G, and coupled with a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that only 1 out of 12 serum samples from a cohort of recipients of the Gamaleya Sputnik V Ad26 / Ad5 vaccine showed effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.

2021 ◽  
Author(s):  
Satoshi Ikegame ◽  
Mohammed N. A. Siddiquey ◽  
Chuan-Tien Hung ◽  
Griffin Haas ◽  
Luca Brambilla ◽  
...  

The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia outbreak in Wuhan, China. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 variants of concern (VOC) across diverse geographic locales suggests herd immunity may fail to eliminate the virus. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus (VSV) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV-G, coupled with a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that 8 out of 12 (75%) of serum samples from 12 recipients of the Russian Sputnik V Ad26 / Ad5 vaccine showed dose response curve slopes indicative of failure to neutralize rcVSV-CoV2-S: B.1.351. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of emergent SARS-CoV-2 variants may benefit from updated vaccines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Satoshi Ikegame ◽  
Mohammed N. A. Siddiquey ◽  
Chuan-Tien Hung ◽  
Griffin Haas ◽  
Luca Brambilla ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected at least 180 million people since its identification as the cause of the current COVID-19 pandemic. The rapid pace of vaccine development has resulted in multiple vaccines already in use worldwide. The contemporaneous emergence of SARS-CoV-2 ‘variants of concern’ (VOC) across diverse geographic locales underscores the need to monitor the efficacy of vaccines being administered globally. All WHO designated VOC carry spike (S) polymorphisms thought to enable escape from neutralizing antibodies. Here, we characterize the neutralizing activity of post-Sputnik V vaccination sera against the ensemble of S mutations present in alpha (B.1.1.7) and beta (B.1.351) VOC. Using de novo generated replication-competent vesicular stomatitis virus expressing various SARS-CoV-2-S in place of VSV-G (rcVSV-CoV2-S), coupled with a clonal 293T-ACE2 + TMPRSS2 + cell line optimized for highly efficient S-mediated infection, we determine that only 1 out of 12 post-vaccination serum samples shows effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralize S from B.1.1.7 and exhibit only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.


Vaccines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Lydia Riepler ◽  
Annika Rössler ◽  
Albert Falch ◽  
André Volland ◽  
Wegene Borena ◽  
...  

Neutralizing antibodies are a major correlate of protection for many viruses including the novel coronavirus SARS-CoV-2. Thus, vaccine candidates should potently induce neutralizing antibodies to render effective protection from infection. A variety of in vitro assays for the detection of SARS-CoV-2 neutralizing antibodies has been described. However, validation of the different assays against each other is important to allow comparison of different studies. Here, we compared four different SARS-CoV-2 neutralization assays using the same set of patient samples. Two assays used replication competent SARS-CoV-2, a focus forming assay and a TCID50-based assay, while the other two assays used replication defective lentiviral or vesicular stomatitis virus (VSV)-based particles pseudotyped with SARS-CoV-2 spike. All assays were robust and produced highly reproducible neutralization titers. Titers of neutralizing antibodies correlated well between the different assays and with the titers of SARS-CoV-2 S-protein binding antibodies detected in an ELISA. Our study showed that commonly used SARS-CoV-2 neutralization assays are robust and that results obtained with different assays are comparable.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Anzhong Li ◽  
Miaoge Xue ◽  
Zayed Attia ◽  
Jingyou Yu ◽  
Mijia Lu ◽  
...  

ABSTRACT The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1−/− mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development. IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.


2016 ◽  
Vol 46 (8) ◽  
pp. 1424-1429 ◽  
Author(s):  
Vinícius Leobet Lunkes ◽  
Alexandre Alberto Tonin ◽  
Gustavo Machado ◽  
Luis Gustavo Corbellini ◽  
Gustavo Nogueira Diehl ◽  
...  

ABSTRACT: Vesicular stomatitis virus (VSV) is the agent of a vesicular disease that affects many animal species and may be clinically confounded with foot-and-mouth disease in ruminant and swine. Horses are especially susceptible to VSV and may serve as sentinels for virus circulation. The present study investigated the presence of neutralizing antibodies against VSV Indiana III (VSIV-3) in serum samples of 3,626 horses from six states in three Brazilian regions: Southern (RS, n = 1,011), Midwest (GO/DF, n = 1,767) and Northeast (PB, PE, RN and CE, n = 848) collected between 2013 and 2014. Neutralizing antibodies against VSIV-3 (titers ≥40) were detected in 641 samples (positivity of 17.7%; CI95%:16.5-19.0%), being 317 samples from CE (87.3%; CI95%: 83.4-90.5 %); 109 from RN (65.7%; CI95%: 57.8 -72.7%); 124 from PB (45.4%; CI95%: 39.4-51.5%); 78 from GO/DF (4.4%; CI95%: 3.5-5.5%) and nine samples of RS (0.9%; CI95%: 0.4-1.7%). Several samples from the Northeast and Midwest harbored high neutralizing titers, indicating a recent exposure to the virus. In contrast, samples from RS had low titers, possibly due to a past remote exposure. Several positive samples presented neutralizing activity against other VSV serotypes (Indiana I and New Jersey), yet in lower titers, indicating the specificity of the response to VSIV-3. These results demonstrated a relatively recent circulation of VSIV-3 in northeastern Brazilian States, confirming clinical findings and demonstrating the sanitary importance of this infection.


2005 ◽  
Vol 86 (8) ◽  
pp. 2269-2274 ◽  
Author(s):  
Shuetsu Fukushi ◽  
Tetsuya Mizutani ◽  
Masayuki Saijo ◽  
Shutoku Matsuyama ◽  
Naoko Miyajima ◽  
...  

Severe acute respiratory syndrome coronavirus (SARS-CoV) contains a single spike (S) protein, which binds to its receptor, angiotensin-converting enzyme 2 (ACE2), induces membrane fusion and serves as a neutralizing antigen. A SARS-CoV-S protein-bearing vesicular stomatitis virus (VSV) pseudotype using the VSVΔG* system was generated. Partial deletion of the SARS-CoV-S protein cytoplasmic domain allowed efficient incorporation into VSV particles and led to the generation of a pseudotype (VSV-SARS-St19) at high titre. Green fluorescent protein expression was demonstrated as early as 7 h after infection of Vero E6 cells with VSV-SARS-St19. VSV-SARS-St19 was neutralized by anti-SARS-CoV antibody and soluble ACE2, and its infection was blocked by treatment of Vero E6 cells with anti-ACE2 antibody. These results indicated that VSV-SARS-St19 infection is mediated by SARS-CoV-S protein in an ACE2-dependent manner. VSV-SARS-St19 will be useful for analysing the function of SARS-CoV-S protein and for developing rapid methods of detecting neutralizing antibodies specific for SARS-CoV infection.


Author(s):  
Vincent Legros ◽  
Solène Denolly ◽  
Manon Vogrig ◽  
Bertrand Boson ◽  
Eglantine Siret ◽  
...  

AbstractUnderstanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection against reinfection and, thus, for public health policy and vaccine development for COVID-19. In this study, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum samples from a cohort of 140 SARS-CoV-2 qPCR-confirmed infections, including patients with mild symptoms and also more severe forms, including those that required intensive care. We show that nAb titers correlated strongly with disease severity and with anti-spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers; conversely, patients with milder disease symptoms had heterogeneous nAb titers, and asymptomatic or exclusive outpatient-care patients had no or low nAbs. We found that nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery compared to individuals infected with other coronaviruses. Moreover, we found an absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAbs against SARS-CoV-2. Finally, we found that the D614G mutation in the spike protein, which has recently been identified as the current major variant in Europe, does not allow neutralization escape. Altogether, our results contribute to our understanding of the immune correlates of SARS-CoV-2-induced disease, and rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2 is warranted.


2021 ◽  
Author(s):  
Yu-An Kung ◽  
Chung-Guei Huang ◽  
Sheng-Yu Huang ◽  
Kuan-Ting Liu ◽  
Peng-Nien Huang ◽  
...  

The World Health Organization (WHO) has highlighted the importance of an international standard (IS) for SARS-CoV-2 neutralizing antibody titer detection, with the aim of calibrating different diagnostic techniques. In this study, IS was applied to calibrate neutralizing antibody titers (IU/mL) and binding antibody titers (BAU/mL) in response to SARS-CoV-2 vaccines. Serum samples were collected from participants receiving the Moderna (n = 20) and Pfizer (n = 20) vaccines at three time points: pre-vaccination, after one dose, and after two doses. We obtained geometric mean titers of 1404.16 and 928.75 IU/mL for neutralizing antibodies after two doses of the Moderna and Pfizer vaccines, respectively. These values provide an important baseline for vaccine development and the implementation of non-inferiority trials. We also compared three commercially available kits from Roche, Abbott, and MeDiPro for the detection of COVID-19 antibodies based on binding affinity to S1 and/or RBD. Our results demonstrated that antibody titers measured by commercial assays are highly correlated with neutralizing antibody titers calibrated by IS.


2021 ◽  
Author(s):  
Phillip Hicks ◽  
Jonna B. Westover ◽  
Tomaz B Manzoni ◽  
Brianne Roper ◽  
Gabrielle L Rock ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 8,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS. Vesicular stomatitis virus (VSV) represents an FDA-approved vaccine platform that has been considered for numerous viruses due to its low sero-prevalence in humans, ease in genetic manipulation and promiscuity in incorporating foreign glycoproteins into its virions. In this study, we developed a recombinant VSV (rVSV) expressing the SFTSV glycoproteins Gn/Gc (rVSV-SFTSV) and assessed its safety, immunogenicity and efficacy in mice. We demonstrate that rVSV-SFTSV is safe when given to immunocompromised animals and is not neuropathogenic when injected intracranially into young immunocompetent mice. Immunization of Ifnar-/- mice with rVSV-SFTSV resulted in high levels of neutralizing antibodies and protection against lethal SFTSV challenge. Additionally, passive transfer of sera from immunized IFNAR-/- mice into naïve animals was protective when given pre- or post-exposure. Finally, we demonstrate that immunization with rVSV-SFTSV cross protects mice against challenge with the closely related Heartland virus despite low neutralizing titers to the virus. Taken together, these data suggest that rVSV-SFTSV is a promising vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document