The Therapeutic Effect of Circular RNA ST3GAL6 on Blocking GC Malignant Behaviors Through Autophagy Regulated by the FOXP2/MET/Mtor Axis

Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Background: Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. Methods: RNA sequencing was used to explore differential circRNA expression profile in gastric cancer and quantitative real-time PCR (qRT-PCR) were used to detect circST3GAL6 expression. The cellular location of circST3GAL6 was determined by fluorescence in situ hybridization (FISH). Functional experiments in circST3GAL6 knockdown and overexpression cell lines were performed in vitro and in vivo. The correlation between circST3GAL6 and miR-300 was confirmed by the RNA pull-down assay, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The effects of circST3GAL6 on autophagy were detected by confocal microscopy and transmission electron microscopy (TEM). The mechanism of the circST3GAL6/miR-300/FOXP2 axis was verified by western blotting. The transcriptional regulation of Met by FOXP2 was proven by ChIP and luciferase reporter assays.Results: CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration.Conclusion: Our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.

2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background circular RNAs (circRNAs) recently have been emerged as vital regulators for involvement of initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC). Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results hsa_circ_0000231 was evidently up-regulated in CRC primary tissues, which was indicated to poor prognosis of CRC patients. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. Mechanistic analysis showed that hsa_circ_0000231 might on the one hand act as a ceRNA (competing endogenous RNA) of miR-375 to regulate cyclin D2 (CCND2), and on the other hand bind to IGF2BP3 protein to protect CCND2 from being degraded. Conclusion Our findings suggest that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2. This discovery implied that has_circ_0000231 may be a potential new diagnostic and therapeutic biomarker for CRC.


Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. Methods RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). Results CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. Conclusions CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yaxin Guo ◽  
Yuying Guo ◽  
Chen Chen ◽  
Dandan Fan ◽  
Xiaoke Wu ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common malignant tumours. The recurrence and metastasis of CRC seriously affect the survival rate of patients. Angiogenesis is an extremely important cause of tumour growth and metastasis. Circular RNAs (circRNAs) have been emerged as vital regulators for tumour progression. However, the regulatory role, clinical significance and underlying mechanisms still remain largely unknown. Methods High-throughput sequencing was used to analyse differential circRNAs expression in tumour and non-tumour tissues of CRC. In situ hybridization (ISH) and qRT-PCR were used to determine the level of circ3823 in CRC tissues and serum samples. Then, functional experiments in vitro and in vivo were performed to investigate the effects of circ3823 on tumour growth, metastasis and angiogenesis in CRC. Sanger sequencing, RNase R and Actinomycin D assay were used to verify the ring structure of circ3823. Mechanistically, dual luciferase reporter assay, fluorescent in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circ3823. Results Circ3823 was evidently highly expressed in CRC and high circ3823 expression predicted a worse prognosis of CRC patients. Receiver operating characteristic curves (ROCs) indicated that the expression of circ3823 in serum showed high sensitivity and specificity for detecting CRC which means circ3823 have the potential to be used as diagnostic biomarkers. Functional experiments in vitro and in vivo indicated that circ3823 promote CRC cell proliferation, metastasis and angiogenesis. Mechanism analysis showed that circ3823 act as a competing endogenous RNA of miR-30c-5p to relieve the repressive effect of miR-30c-5p on its target TCF7 which upregulates MYC and CCND1, and finally facilitates CRC progression. In addition, we found that N6-methyladenosine (m6A) modification exists on circ3823. And the m6A modification is involved in regulating the degradation of circ3823. Conclusions Our findings suggest that circ3823 promotes CRC growth, metastasis and angiogenesis through circ3823/miR-30c-5p/TCF7 axis and it may serve as a new diagnostic marker or target for treatment of CRC patients. In addition, m6A modification is involved in regulating the degradation of circ3823.


2021 ◽  
Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. In our study, CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration. In summary, our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Yang ◽  
Yong-ning Zhou ◽  
Miao-miao Zeng ◽  
Nan Zhou ◽  
Bin-sheng Wang ◽  
...  

BackgroundCircular RNAs (circRNAs) are closely associated with the occurrences and progress of gastric cancer (GC). We aimed to delve into the function and pathological mechanism of Circular RNA-0002570 (circ-0002570) in GC progression.MethodsCircRNAs differentially expressed in GC were screened using bioinformatics technology. The expression of circ-0002570 was detected in GC specimens and cells via qRT-PCR, and the prognostic values of circ-0002570 were determined. The functional roles of circ-0002570 on proliferation, migration, and invasion in GC cells were explored in vitro and in vivo. Interaction of circ-0002570, miR-587, and VCAN was confirmed by dual-luciferase reporter assays, Western blotting, and rescue experiments.ResultsCirc-0002570 expression was distinctly increased in GC tissues compared to adjacent normal specimens, and GC patients with higher circ-0002570 expressions displayed a short survival. Functionally, knockdown of circ-0002570 resulted in the inhibition of cell proliferation, migration, and invasion, and suppressed tumor growth in vivo. Mechanistically, miR-587 was sponged by circ-0002570. VCAN expression in NSCLC was directly inhibited by miR-587. Overexpression of circ-0002570 prevented VCAN from miR-587-mediated degradation and thus facilitated GC progression.ConclusionThe circ-0002570-miR-587-VCAN regulatory pathway promoted the progression of GC. Our findings provided potential new targets for the diagnosis and therapy of GC.


2020 ◽  
Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background: Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated.Methods: RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM).Results: CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model.Conclusions: CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


2020 ◽  
Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background: Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). Poor prognosis of GC patients is partially due to development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of non-coding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. Methods: RNA-sequencing was used to identify the differentially expressed circRNAs between the CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and Luciferase reporter assays were performed to confirm the interaction among circMCTP2, miR-99a-5p, and myotubularin related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM).Results: CircMCTP2 was found to be downregulated in the CDDP-resistant GC cells and tissues as compared to that of the CDDP-sensitive ones. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited cell proliferation and autophagy while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 upregulated MTMR3 by sponging miR-99a-5p, and knockdown of MTMR3 could reverse the effects of circMCTP2 on CDDP resistance and autophagy of GC cells. Conclusions: CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


2021 ◽  
Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. In our study, CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration. In summary, our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yilin Lin ◽  
Yang Yang ◽  
Zhen Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


Sign in / Sign up

Export Citation Format

Share Document