scholarly journals Insight of Transcriptional Regulators reveals the Tolerance Mechanism of Carpet-grass (Axonopus compressus) Against Drought

2021 ◽  
Author(s):  
Mohsin Nawaz ◽  
Liao Li ◽  
Farrukh Azeem ◽  
Samina Shabbir ◽  
Ali Zohaib ◽  
...  

Abstract Background: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. Results: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153697 (58.25%) unigenes classified to 144 KEGG pathways, and 7,444 unigenes were expressed differentially between DS and CK, of which 4,249 were up-regulated and 3,195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2,747 DEGs were up-regulated and 2,502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3,300 sequences of Axonopus compressus in the NCBI.Conclusion: The 7,444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought.

2020 ◽  
Author(s):  
Mohsin Nawaz ◽  
Liao Li ◽  
Farrukh Azeem ◽  
Samina Shabbir ◽  
Ali Zohaib ◽  
...  

Abstract Background: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq.Results: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153697 (58.25%) unigenes classified to 144 KEGG pathways, and 7,444 unigenes were expressed differentially between DS and CK, of which 4,249 were up-regulated and 3,195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2,747 DEGs were up-regulated and 2,502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3,300 sequences of Axonopus compressus in the NCBI.Conclusion: The 7,444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought.


2020 ◽  
Author(s):  
Mohsin Nawaz ◽  
Liao Li ◽  
Farrukh Azeem ◽  
Samina Shabbir ◽  
Ali Zohaib ◽  
...  

Abstract Background: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension on the mechanisms of environmental adaptations, gene discovery and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. Results: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 data bases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153697 (58.25%) unigenes classified to 144 KEGG pathways, and 7,444 unigenes were expressed differentially between DS and CK, of which 4,249 were up-regulated and 3,195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6 and 14 items were related to BP, CC and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2,747 DEGs were up-regulated and 2,502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also support the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3,300 sequences of Axonopus compressus in the NCBI.Conclusion: The 7,444 unigenes were found to be between DS and CK treatments which indicate that there is a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohsin Nawaz ◽  
Liao Li ◽  
Farrukh Azeem ◽  
Samina Shabbir ◽  
Ali Zohaib ◽  
...  

Abstract Background Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. Results A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153,697 (58.25%) unigenes classified to 144 KEGG pathways, and 7444 unigenes were expressed differentially between DS and CK, of which 4249 were up-regulated and 3195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2747 DEGs were up-regulated and 2502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3300 sequences of Axonopus compressus in the NCBI. Conclusion The 7444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought.


2020 ◽  
Author(s):  
Mohsin Nawaz ◽  
Liao Li ◽  
Farrukh Azeem ◽  
Samina Shabbir ◽  
Ali Zohaib ◽  
...  

Abstract Highlights:1. Axonopus compressus can stand severe drought stress by activating the potential defense mechanism.2. We investigated the differential transcriptome of drought stressed and normal Axonopus compressus plants3. New comers have been identified that involved in the drought response4. Identified drought responsive genes which never known for other stresses.5. The identified genes also respond to stress in Arabidopsis thaliana in different manners.Background: Carpet grass [Axonopus compressus (L.)] is an important warm season perennial grass around the world and is renowned for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data bank, which confined our comprehension of the mechanism of environmental adaptations, gene discovery and development of molecular marker. Methods: In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. Results: the 263,835 of total unigenes were identified in Axonopus compressus, and 201,303 (also add the numbers of remaining2 data bases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153697 (58.25%) unigenes can be classified to 144 KEGG pathways, and 7,444 unigenes were expressed differentially between DS and CK, of which 4,249 were up-regulated and 3,195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6 and 14 items were related to BP, CC and MF, respectively. Analysis of KEGG enrichment showed 2569 DEGs involved in 143 different pathways, under drought stress 2,747 DEGs were up-regulated and 2,502 DEGs were down-regulated. Moreover, we identified 352 transcriptor factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also support the transcriptional response of Axonopus compressus against drought. Conclusions: The current findings provide the first framework for further investigation for the particular roles of these unigenes in Axonopus compressus in response to droughts.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chunsheng Gao ◽  
Chaohua Cheng ◽  
Lining Zhao ◽  
Yongting Yu ◽  
Qing Tang ◽  
...  

Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jose J. De Vega ◽  
Abel Teshome ◽  
Manfred Klaas ◽  
Jim Grant ◽  
John Finnan ◽  
...  

Abstract Background Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity, resilience and photosynthetic capacity at low temperature. These qualities make Miscanthus a particularly good candidate for temperate marginal land, where yields can be limited by insufficient or excessive water supply. Differences in response to water stress have been observed among Miscanthus species, which correlated to origin. In this study, we compared the physiological and molecular responses among Miscanthus species under excessive (flooded) and insufficient (drought) water supply in glasshouse conditions. Results A significant biomass loss was observed under drought conditions in all genotypes. M. x giganteus showed a lower reduction in biomass yield under drought conditions compared to the control than the other species. Under flooded conditions, biomass yield was as good as or better than control conditions in all species. 4389 of the 67,789 genes (6.4%) in the reference genome were differentially expressed during drought among four Miscanthus genotypes from different species. We observed the same biological processes were regulated across Miscanthus species during drought stress despite the DEGs being not similar. Upregulated differentially expressed genes were significantly involved in sucrose and starch metabolism, redox, and water and glycerol homeostasis and channel activity. Multiple copies of the starch metabolic enzymes BAM and waxy GBSS-I were strongly up-regulated in drought stress in all Miscanthus genotypes, and 12 aquaporins (PIP1, PIP2 and NIP2) were also up-regulated in drought stress across genotypes. Conclusions Different phenotypic responses were observed during drought stress among Miscanthus genotypes from different species, supporting differences in genetic adaption. The low number of DEGs and higher biomass yield in flooded conditions supported Miscanthus use in flooded land. The molecular processes regulated during drought were shared among Miscanthus species and consistent with functional categories known to be critical during drought stress in model organisms. However, differences in the regulated genes, likely associated with ploidy and heterosis, highlighted the value of exploring its diversity for breeding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10508-10508
Author(s):  
Vinay Varadan ◽  
Sitharthan Kamalakaran ◽  
Angel Janevski ◽  
Nila Banerjee ◽  
Kimberly Lezon-Geyda ◽  
...  

10508 Background: Identification of differentially expressed transcripts after brief exposure to preoperative therapy can help determine likely response markers. We quantify and compare differential gene and isoform expression using RNA-seq on patient samples with 10 day exposure to one dose of trastuzumab, bevacizumab or nab-paclitaxel. Methods: We sequenced transcriptomes of 23 pairs of core biopsy RNA from breast cancers pre/post 10 day exposure to therapy. Paired-end sequencing was done on the Illumina GAII platform using amplified total RNA with 74bp read length, yielding data on transcript abundance for a total of 22,160 genes and 34,449 transcripts. Differential expression of transcripts between pre/post samples was estimated assuming Poisson-distributed read-counts, followed by multiple testing correction and enrichment analysis of 185 KEGG pathways. Results: PAM50-based clustering showed individual samples cluster together, demonstrating that tumor subtypes do not change over the 10-day treatment (SABCS 2011). We identified genes that were significantly differentially expressed (p<0.05; FDR<0.1) in at least 60% of samples within each therapy arm: 780 genes in trastuzumab, 302 in bevacizumab, and 176 in nab-paclitaxel. Surprisingly, only THAP11 and TINF2 were common amongst them. THAP11 is involved in stem cell maintenance and TINF2 is important for regulation of telomere length. Immune system and metabolism-related pathways were commonly affected (p<0.05) across all arms. The bevacizumab arm showed significant down-regulation of angiogenesis-associated genes: ESM1 and VEGFR2 in > 80% of samples. The nab-paclitaxel arm exhibited changes in TGF-beta signaling, Nod-like receptor and Wnt signaling. The trastuzumab arm exhibited consistent alteration of ErbB2 and mTOR pathways, with SOX11 and TOP2B downregulated in every sample. Conclusions: This is the first study to compare gene expression with brief exposure across therapies using RNA-seq technology. The unique aspects of transcriptional response to each treatment underscore the need for specific markers of therapeutic response to nab-paclitaxel, bevacizumab and trastuzumab.


2019 ◽  
Vol 20 (2) ◽  
pp. 369 ◽  
Author(s):  
Jianzhong Wu ◽  
Qian Zhao ◽  
Guangwen Wu ◽  
Hongmei Yuan ◽  
Yanhua Ma ◽  
...  

Flax (Linum usitatissimum L.) is an important industrial crop that is often cultivated on marginal lands, where salt stress negatively affects yield and quality. High-throughput RNA sequencing (RNA-seq) using the powerful Illumina platform was employed for transcript analysis and gene discovery to reveal flax response mechanisms to salt stress. After cDNA libraries were constructed from flax exposed to water (negative control) or salt (100 mM NaCl) for 12 h, 24 h or 48 h, transcription expression profiles and cDNA sequences representing expressed mRNA were obtained. A total of 431,808,502 clean reads were assembled to form 75,961 unigenes. After ruling out short-length and low-quality sequences, 33,774 differentially expressed unigenes (DEUs) were identified between salt-stressed and unstressed control (C) flax. Of these DEUs, 3669, 8882 and 21,223 unigenes were obtained from flax exposed to salt for 12 h (N1), 24 h (N2) and 48 h (N4), respectively. Gene function classification and pathway assignments of 2842 DEUs were obtained by comparing unigene sequences to information within public data repositories. qRT-PCR of selected DEUs was used to validate flax cDNA libraries generated for various durations of salt exposure. Based on transcriptome sequences, 1777 EST-SSRs were identified of which trinucleotide and dinucleotide repeat microsatellite motifs were most abundant. The flax DEUs and EST-SSRs identified here will serve as a powerful resource to better understand flax response mechanisms to salt exposure for development of more salt-tolerant varieties of flax.


2020 ◽  
Author(s):  
Verboom Karen ◽  
Alemu T Assefa ◽  
Nurten Yigit ◽  
Jasper Anckaert ◽  
Niels Vandamme ◽  
...  

ABSTRACTTechnological advances in transcriptome sequencing of single cells continues to provide an unprecedented view on tissue composition and cellular heterogeneity. While several studies have compared different single cell RNA-seq methods with respect to data quality and their ability to distinguish cell subpopulations, none of these studies investigated the heterogeneity of the cellular transcriptional response upon a chemical perturbation. In this study, we evaluated the transcriptional response of NGP neuroblastoma cells upon nutlin-3 treatment using the C1, ddSeq and Chromium single cell systems. These devices and library preparation methods are representative for the wide variety of platforms, ranging from microfluid chips to droplet-based systems and from full transcript sequencing to 3-prime end sequencing. In parallel, we used bulk RNA-seq for molecular characterization of the transcriptional response. Two complementary metrics to evaluate performance were applied: the first is the number and identity of differentially expressed genes as defined in consensus by two statistical models, and the second is the enrichment analysis of biological signals. Where relevant, to make the data more comparable, we downsampled sequencing library size, selected cell subpopulations based on specific RNA abundance features, or created pseudobulk samples. While the C1 detects the highest number of genes per cell and better resembles bulk RNA-seq, the Chromium identifies most differentially expressed genes, albeit still substantially fewer than bulk RNA-seq. Gene set enrichment analyses reveals that detection of a limited set of the most abundant genes in single cell RNA-seq experiments is sufficient for molecular phenotyping. Finally, single cell RNA-seq reveals a heterogeneous response of NGP neuroblastoma cells upon nutlin-3 treatment, revealing putative late-responder or resistant cells, both undetected in bulk RNA-seq experiments.


2021 ◽  
Author(s):  
Ma Peijie+ ◽  
Li Yajiao+ ◽  
Shu Jianhong ◽  
Wang Ziyuan ◽  
Chen Xi ◽  
...  

Abstract BackgroundLotus japonicus is a perennial herb in Leguminosae. It is a good feed source and improves soil. It is also an excellent honey source and medicinal plant. Low-phosphorus and drought stresses are among the main abiotic stress factors limiting the production of pulse roots. MethodsIn this experiment, the effects of low-phosphorus and drought stresses on Baimai roots were analyzed under three treatments: control (zl1), low-phosphorus stress (zl2) and drought stress (zl3). Results A total of 2176, 3026 and 2980 differentially expressed genes were screened in zl1 vs. zl2, zl1 vs. zl3 and zl2 vs. zl3, respectively. The differentially expressed genes were enriched in functions related to cells, membranes, ion binding, enzyme activity and resistance to low-phosphorus and drought stresses. The enriched KEGG pathways included the MAPK signaling pathway-plant, flavor biosynthesis, starch and sucrose metabolism and plant hormone signal transmission. In particular, a large number of differentially expressed genes were enriched in the response to plant hormone signal transmission pathways among different treatments, and gene expression changes were analyzed. In addition, the differentially expressed genes identified under drought stress and the phase response genes identified under osmotic stress were upregulated. Differential metabolites were mainly enriched in the important metabolic pathways of flavonoid biosynthesis, arginine and proline metabolism and starch and sucrose metabolism. Differentially expressed proteins were mainly enriched in GO terms related to cell, membrane, ion binding and enzyme activity functions, and the main enriched KEGG pathways included the ribosome, starch and sucrose metabolism and plant hormone signal transmission pathways. ConclusionIn conclusion, these results of transcriptome, metabolome and proteome sequencing are helpful for understanding the response mechanisms, gene changes, metabolite changes and protein changes in Baimai roots under low-phosphorus and drought stress conditions to lay a foundation for future research on Lotus japonicus.


Sign in / Sign up

Export Citation Format

Share Document