scholarly journals Dissecting Molecular Mechanisms Underlying H2O2-induced Apoptosis of Mouse Bone Marrow Mesenchymal Stem Cell: Role of Mst1 Inhibition.

2020 ◽  
Author(s):  
Qian Zhang ◽  
Xianfeng Cheng ◽  
Haizhou Zhang ◽  
Tao Zhang ◽  
Zhengjun Wang ◽  
...  

Abstract Background: Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover whether Mst1 inhibition enhanced the tolerance of BM-MSCs under H2O2 condition and the underlying mechanisms. Methods: Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H 2 O 2 . Cell viability was detected by Cell counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H 2 O 2 -treated BM-MSC/sh-Mst1 was also measured. Results: Mst1 inhibition reduced ROS production, increased antioxidant enzyme SOD1/2, CAT, GPx expression, maintained ΔΨm, and alleviated cell apoptosis in H 2 O 2 -treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. The autophagy inhibitor, the antioxidant pathway Keap1/Nrf2, was also blocked when autophagy was inhibited by 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. Conclusion: Mst1 inhibition mediates the cytoprotective benefit of mBM-MSCs against H 2 O 2 oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian Zhang ◽  
Xianfeng Cheng ◽  
Haizhou Zhang ◽  
Tao Zhang ◽  
Zhengjun Wang ◽  
...  

Abstract Background Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition. Methods Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell Counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus, and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. Results Mst1 inhibition reduced ROS production; increased antioxidant enzyme SOD1/2, CAT, and GPx expression; maintained ΔΨm; and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2 was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. Conclusion Mst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway. Graphical abstract


2020 ◽  
Author(s):  
Qian Zhang ◽  
Xianfeng Cheng ◽  
Haizhou Zhang ◽  
Tao Zhang ◽  
Zhengjun Wang ◽  
...  

Abstract Background Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover whether Mst1 inhibition enhanced the tolerance of BM-MSCs under H2O2 condition and the underlying mechanisms. Methods Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell counting Kit 8 (CCK‑8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. Results Mst1 inhibition reduced ROS production, increased antioxidant enzyme SOD1/2, CAT, GPx expression, maintained ΔΨm, and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. The autophagy inhibitor, the antioxidant pathway Keap1/Nrf2, was also blocked when autophagy was inhibited by 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. Conclusion Mst1 inhibition mediates the cytoprotective benefit of mBM-MSCs against H2O2 oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.


2020 ◽  
Author(s):  
Qian Zhang ◽  
Xianfeng Cheng ◽  
Haizhou Zhang ◽  
Tao Zhang ◽  
Zhengjun Wang ◽  
...  

Abstract BackgroundBone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition.MethodsMst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell counting Kit 8 (CCK‑8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured.ResultsMst1 inhibition reduced ROS production, increased antioxidant enzyme SOD1/2, CAT, GPx expression, maintained ΔΨm, and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2, was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression.ConclusionMst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.


2018 ◽  
Vol 119 (4) ◽  
pp. 3732-3743 ◽  
Author(s):  
Jingsong Sun ◽  
Xiaoxia Shi ◽  
Shuangyue Li ◽  
Fengyuan Piao

Author(s):  
Yanyan Qi ◽  
Tingting Zhu ◽  
Tingting Zhang ◽  
Xi Wang ◽  
Wenbo Li ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 1918-1923
Author(s):  
Xinfa Zhang ◽  
Cheng Han

This study aims to investigate whether bone marrow mesenchymal stem cell (BMSC) exosomes (BMSC-exos) affects the progression of colon cancer. Ultracentrifugation was used to extract and collect BMSC-exos which were assessed under electron microscope and by flow cytometry. The BMSCs were divided into two groups: control group treated with α-MEM basal medium and experimental group with exosomes (10 μg/ml). Exos were extracted from BMSCs and co-cultured with colon cancer cells, followed by analysis of cell viability by CCK-8 assay and GLUT3 mRNA and protein expression by RT-qPCR and Western blot. The electron microscope analysis indicated that the primary BMSCs showed a long spindle shape with a negative expression of antigen CD34 and positive antigen CD90. Importantly, exos inhibited the viability of colon cancer cells HCT116 and decreased the expression of GLUT3, suggesting that exos might increase the colon cancer cell apoptosis. In conclusion, BMSC-exos inhibit cell progression in colon cancer and might be served as a promising biomarker.


2011 ◽  
Vol 2 (10) ◽  
pp. 845-854 ◽  
Author(s):  
Xiaolei Liu ◽  
Biyan Duan ◽  
Zhaokang Cheng ◽  
Xiaohua Jia ◽  
Lina Mao ◽  
...  

2021 ◽  
pp. 1788-1796
Author(s):  
Sri Ratna Dwiningsih ◽  
Soehartono Darmosoekarto ◽  
Hendy Hendarto ◽  
Erry Gumilar Dachlan ◽  
Fedik Abdul Rantam ◽  
...  

Background and Aim: Endometriosis affects the ovaries and causes a decrease in the oocyte quality during endometrial receptivity. During the development of ovarian follicles, paracrine communication occurs between granulosa cells and oocytes. This study was conducted to determine the effects of bone marrow mesenchymal stem cell transplantation on tumor necrosis factor-alpha (TNF-α) receptor 1 (TNFR1) expression, granulosa cell apoptosis, and folliculogenesis in endometriosis mouse models. Materials and Methods: This study involved 42 female mice, which were divided into three groups: Healthy mice (T0), endometriosis mice without transplantation (T1), and endometriosis mice with bone marrow mesenchymal stem cell transplantation (T2). The mice were injected intraperitoneally with endometrial fragments (200 μL) to become endometriosis models. On day 15, the endometriosis models received mesenchymal stem cells. Sample collection was performed on day 29. Granulosa cell apoptosis and TNFR1 expression were examined using immunohistochemical staining, and folliculogenesis was assessed using hematoxylin and eosin staining of ovary samples. The data obtained from both examinations were statistically analyzed using Statistical Package for the Social Sciences. Results: The results showed that TNFR1 expression is significantly decreased in T2 (p<0.004). The apoptosis of granulosa cells was lower in T2 (p<0.000). The primary, secondary, and graafian follicle counts in T2 were significantly increased. Conclusion: Bone marrow mesenchymal stem cell transplantation in endometriosis mouse models can reduce TNFR1 expression and granulosa cell apoptosis and improve folliculogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xin-Gang Pang ◽  
Yu Cong ◽  
Ni-Rong Bao ◽  
Yong-Gang Li ◽  
Jian-Ning Zhao

Objectives. The present study aimed to investigate the overall effect of quercetin on mouse bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation in vitro. Materials and Methods. BMSCs were treated with different concentrations of quercetin for 6 days. The effects of quercetin on cell proliferation were assessed at predetermined times using Cell Counting Kit-8 (CCK-8) assay. The cells were then treated with quercetin, estrogen, or an estrogen receptor (ER) antagonist (which was also administered in the presence of quercetin or estrogen) for 7 or 21 days. The effects of quercetin on BMSC osteogenic differentiation were analyzed by an alkaline phosphatase (ALP) assay kit, Alizarin Red S staining (ARS), quantitative real-time PCR (qPCR), and western blotting. Results. The CCK-8 and ALP assays and ARS staining showed that quercetin significantly enhanced BMSC proliferation, ALP activity, and extracellular matrix production and mineralization, respectively. The qPCR results indicated that quercetin promoted osterix (OSX), runt-related transcription factor 2 (RUNX2), and osteopontin (OPN) transcription in the presence of osteoinduction medium, and the western blotting results indicated that quercetin enhanced bone morphogenetic protein 2 (BMP2), Smad1, Smad4, RUNX2, OSX, and OPN expression and Smad1 phosphorylation. Treatment with the ER inhibitor ICI182780 blocked the effects of quercetin. Conclusions. Our data demonstrated that quercetin promotes BMSC proliferation and osteogenic differentiation. Quercetin enhances BMP signaling pathway activation and upregulates the expression of downstream genes, such as OSX, RUNX2, and OPN, via the ER.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Liping Mai ◽  
Guodong He ◽  
Jing Chen ◽  
Jiening Zhu ◽  
Shaoxian Chen ◽  
...  

Background and Aim. The senescence of human bone marrow mesenchymal stem cells (hBMSCs) can be induced by oxidative stress, but the mechanism by which it occurs is not yet clear. Here, we performed an investigation on the pathogenesis of hypoxia-induced senescence through proteomic analyses and aimed to explore the mechanisms of stem cell senescence. Methods. Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results. Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions. Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.


Sign in / Sign up

Export Citation Format

Share Document