scholarly journals Optimization of Enzyme Production from Streptomyces by Solid-state Fermentation of Agricultural Wastes using the Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) Method

Author(s):  
Gabriela Dominguez ◽  
Carmen Fajardo ◽  
Maria E. Arias ◽  
Jose M. Molina-Guijarro ◽  
Juana Rodriguez ◽  
...  

Abstract This study used Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) to identify and optimize the combined effect of the temperature, fermentation time, substrate-type, and fermenting microorganism on solid-state fermentation (SSF) culture of different agricultural wastes, in order to evidence the interactions among variables that allow maximizing the production of each enzyme. Thus, barley and wheat straw were fermented using two Streptomyces strains (S. MDG 301 and S. MDG 147) under SSF conditions. Key degradative enzymes (xylanases, carboxylmethilcellulase (CMCase), mannanase, laccase and peroxidase) and lignin solubilisation were evaluated. Our results highlighted that the highest xylanases and CMCase levels were obtained after treatment of wheat straw for two days with the S. MDG 301 strain at 45°C. Similarly, we found that the highest mannanase level was achieved using the S. MDG 147 strain on the barley straw at 28°C. Therefore, the integrated approach used based on analytical and bio statistical methods, proved to be a valuable tool for an accurate and rapid determination of the most significant parameters for controlling the bio-transformation process in terms of the enzymatic activity and lignin solubilisation.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Yin Wan Ho ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
...  

Ability of two strains ofAspergillus terreus(ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained usingA. terreusATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM forA. terreusATCC 20542 andA. terreusATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P<0.01) and inoculums size and pH had no significant effect on lovastatin production (P>0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM forA. terreusATCC 20542 and ATCC 74135, respectively, using RS as substrate.


2017 ◽  
Vol 118 ◽  
pp. 19-26 ◽  
Author(s):  
Mohd Anis Ganaie ◽  
Hemant Soni ◽  
Gowhar Ahmad Naikoo ◽  
Layana Taynara Santos Oliveira ◽  
Hemant Kumar Rawat ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Sign in / Sign up

Export Citation Format

Share Document