scholarly journals Determination of Thermal Material Properties for the Numerical Simulation of Cutting Processes

Author(s):  
Michael Storchak ◽  
Thomas Stehle ◽  
Hans-Christian Möhring

Abstract Thermal properties of work materials, which depend significantly on the change in cutting temperature, have a considerable effect on thermal machining characteristics. Therefore, the thermal properties used for the numerical simulation of the cutting process should be determined depending on the cutting temperature. To determine the thermal properties of the work materials, a methodology and a software-implemented algorithm were developed for their calculation. This methodology is based on analytical models for the determination of tangential stress in the primary cutting zone. Based on this stress and experimentally or analytically determined cutting temperatures, thermal properties of the work material were calculated, namely the coefficient of the heat capacity as well as the coefficient of thermal conductivity. Three variants were provided for determining the tangential stress: based on the normal stress calculated using the Johnson-Cook constitutive equation, based on the experimentally determined cutting and thrust forces as well as by directly calculating the tangential stress. The thermal properties were determined using the example of three different materials: AISI 1045 and AISI 4140 steel as well as Ti10V2Fe3Al titanium alloy (Ti-1023). With the developed FE cutting model, the deviation between experimental and simulated temperature values ranged from approx. 7.5–14.4%.

2011 ◽  
Vol 223 ◽  
pp. 162-171
Author(s):  
Yan Cheng Zhang ◽  
Domenico Umbrello ◽  
Tarek Mabrouki ◽  
Stefania Rizzuti ◽  
Daniel Nelias ◽  
...  

Nowadays, numerical simulation of cutting processes receives considerable interest among the scientific and industrial communities. For that, various numerical codes are used. Nevertheless, there is no uniform standard for the comparison of simulation model with these different software. So, it is often not easy to state if a given code is more pertinent than another. In this framework, the present work deals with various methodologies to simulate orthogonal cutting operation inside two commercial codes Abaqus and Deform. The aim of the present paper is to build a common benchmark model between the two pre-cited codes which can initiate other numerical cutting model comparisons. The study is focused on the typical aeronautical material - Ti-6Al-4V - Titanium alloy. In order to carry out a comparative study between the two codes, some similar conditions concerning geometrical models and cutting parameters were respected. A multi-physic comprehension related to chip formation, cutting forces and temperature evolutions, and surface integrity is presented. Moreover, the numerical results are compared with experimental ones.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 397-402
Author(s):  
Yasuhiko Wada ◽  
Hiroyuki Miura ◽  
Rituo Tada ◽  
Yasuo Kodaka

We examined the possibility of improved runoff control in a porous asphalt pavement by installing beneath it an infiltration pipe with a numerical simulation model that can simulate rainfall infiltration and runoff at the porous asphalt pavement. From the results of simulations about runoff and infiltration at the porous asphalt pavement, it became clear that putting a pipe under the porous asphalt pavement had considerable effect, especially during the latter part of the rainfall.


2016 ◽  
Vol 217 ◽  
pp. 100-108 ◽  
Author(s):  
J.F. Buyel ◽  
H.M. Gruchow ◽  
N. Tödter ◽  
M. Wehner

2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2019 ◽  
Vol 3 (3) ◽  
pp. 73 ◽  
Author(s):  
Mohamad Karaki ◽  
Rafic Younes ◽  
Francois Trochu ◽  
Pascal Lafon

A great amount of attention has been given to the evaluation of the permeability tensor and several methods have been implemented for this purpose: experimental methods, as well as numerical and analytical methods. Numerical simulation tools are being seriously developed to cover the evaluation of permeability. However, the results are still far from matching reality. On the other hand, many problems still intervene in the experimental measurement of permeability, since it depends on several parameters including personal performance, preparation of specimens, equipment accuracy, and measurement techniques. Errors encountered in these parameters may explain why inconsistent measurements are obtained which result in unreliable experimental evaluation of permeability. However, good progress was done in the second international Benchmark, wherein a method to measure the in-plane permeability was agreed on by 12 institutes and universities. Critical researchers’ work was done in the field of analytical methods, and thus different empirical and analytical models have emerged, but most of those models need to be improved. Some of which are based on Cozeny-Karman equation. Others depend on numerical simulation or experiment to predict the macroscopic permeability. Also, the modeling of permeability of unidirectional fiber beds have taken the greater load of concern, whereas that of fiber bundle permeability prediction remain limited. This paper presents a review on available methods for evaluating unidirectional fiber bundles and engineering fabric permeability. The progress of each method is shown in order to clear things up.


Sign in / Sign up

Export Citation Format

Share Document