scholarly journals Crosstalk between RPE cells and choroidal endothelial cells via the ANXA1/FPR2/SHP2/NLRP3 inflammasome/pyroptosis axis promotes choroidal neovascularization

Author(s):  
Manhui Zhu ◽  
Ying Wang ◽  
Linling Zhu ◽  
Shu Du ◽  
Zhenzhen Wang ◽  
...  

Abstract One type of age-related macular degeneration (AMD), neovascular (nAMD), characterized by choroidal neovascularization (CNV), accounts for the majority of the severe central vision impairment associated with AMD. Endothelial cells (ECs) in direct contact with retinal pigment epithelial (RPE) cells are more prone to the pathological angiogenesis involved in CNV. Herein, we investigated the effect of crosstalk between RPE cells and choroidal endothelial cells (CECs) via the ANXA1/FPR2/NLRP3 inflammasome/pyroptosis axis on the development of choroidal neovascularization (CNV) in vitro and in vivo. ANXA1 expression and secretion from ARPE-19 cells were upregulated by hypoxia. FPR2 expression, especially on the plasma membrane, in HCECs was upregulated under hypoxic conditions. ANXA1 secreted from ARPE-19 cells inhibited NLRP3 inflammasome activation and NLRP3 inflammasome-mediated pyroptosis in HCECs by activating the FPR2/SHP2 axis. Moreover, ANXA1 secreted by ARPE-19 cells promoted behaviors of HCECs, including proliferation, migration and tube formation, by activating the FPR2/SHP2 axis and inhibiting NLRP3 inflammasome-mediated pyroptosis. Inhibiting the upregulated ANXA1/FPR2/SHP2/NLRP3 inflammasome/pyroptosis axis decreased the volume of CNV. Our data suggest that the crosstalk between RPE cells and CECs via the ANXA1/FPR2/NLRP3 inflammasome/pyroptosis axis promotes CNV. This finding could identify a potential target for the prevention and treatment of CNV.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jakob Malsy ◽  
Andrea C Alvarado ◽  
Joseph O Lamontagne ◽  
Karin Strittmatter ◽  
Alexander G Marneros

NLRP3 inflammasome activation and complement-mediated inflammation have been implicated in promoting choroidal neovascularization (CNV) in age-related macular degeneration (AMD), but central questions regarding their contributions to AMD pathogenesis remain unanswered. Key open questions are (1) whether NLRP3 inflammasome activation mainly in retinal pigment epithelium (RPE) or rather in non-RPE cells promotes CNV, (2) whether inflammasome activation in CNV occurs via NLRP3 or also through NLRP3-independent mechanisms, and (3) whether complement activation induces inflammasome activation in CNV. Here we show in a neovascular AMD mouse model that NLRP3 inflammasome activation in non-RPE cells but not in RPE cells promotes CNV. We demonstrate that both NLRP3-dependent and NLRP3-independent inflammasome activation mechanisms induce CNV. Finally, we find that complement and inflammasomes promote CNV through independent mechanisms. Our findings uncover an unexpected role of non-NLRP3 inflammasomes for CNV and suggest that combination therapies targeting inflammasomes and complement may offer synergistic benefits to inhibit CNV.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Niina Bhattarai ◽  
Niina Piippo ◽  
Sofia Ranta-aho ◽  
Yashavanthi Mysore ◽  
Kai Kaarniranta ◽  
...  

Age-related macular degeneration (AMD) is an eye disease in which retinal pigment epithelium (RPE) cells play a crucial role in maintaining retinal homeostasis and photoreceptors’ functionality. During disease progression, there is increased inflammation with nucleotide-binding domain, leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome activation, oxidative stress, and impaired autophagy in RPE cells. Previously, we have shown that the dietary supplement Resvega reduces reactive oxygen species (ROS) production and induces autophagy in RPE cells. Here, we investigated the ability of Resvega to prevent NLRP3 inflammasome activation with impaired protein clearance in human RPE cells. Cell viability was measured using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Enzyme-linked immunosorbent assays (ELISA) were utilized to determine the secretion of cytokines, NLRP3, and vascular endothelial growth factor (VEGF). Caspase-1 activity was measured with a fluorescent labeled inhibitor of caspase-1 (FLICA; FAM-YVAD-FMK) and detected microscopically. Resvega improved the cell membrane integrity, which was evident as reduced LDH leakage from cells. In addition, the caspase-1 activity and NLRP3 release were reduced, as was the secretion of two inflammatory cytokines, interleukin (IL)-1β and IL-8, in IL-1α-primed ARPE-19 cells. According to our results, Resvega can potentially reduce NLRP3 inflammasome-mediated inflammation in RPE cells with impaired protein clearance.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1253
Author(s):  
Ajay Ashok ◽  
Suman Chaudhary ◽  
Aaron S. Wise ◽  
Neil A. Rana ◽  
Dallas McDonald ◽  
...  

To evaluate the role of iron in sodium iodate (NaIO3)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO3 for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively. For in-vivo studies, C57BL/6 mice were injected with 40 mg/kg mouse body weight of NaIO3 intraperitoneally, and their retina was evaluated after 3 weeks as above. NaIO3 induced a 10-fold increase in ferritin in ARPE-19 cells, which co-localized with LC3II, an autophagosomal marker, and LAMP-1, a lysosomal marker. A similar increase in ferritin was noted in retinal lysates and retinal sections of NaIO3-injected mice by WB and immunostaining. Impaired synthesis and maturation of cat-D was also noted. Accumulated ferritin was loaded with iron, and released from retinal pigmented epithelial (RPE) cells in Perls’ and LAMP-1 positive vesicles. NaIO3 impairs lysosomal degradation of ferritin by decreasing the transcription and maturation of cat-D in RPE cells. Iron-loaded ferritin accumulates in lysosomes and is released in lysosomal membrane-enclosed vesicles to the extracellular milieu. Accumulation of ferritin in RPE cells and fusion of ferritin-containing vesicles with adjacent photoreceptor cells is likely to create an iron overload, compromising their viability. Moreover, reduced activity of cat-D is likely to promote accumulation of other cellular debris in lysosomal vesicles, contributing to AMD-like pathology.


2020 ◽  
Vol 21 (9) ◽  
pp. 3077 ◽  
Author(s):  
Shota Fujii ◽  
Sunao Sugita ◽  
Yoko Futatsugi ◽  
Masaaki Ishida ◽  
Ayaka Edo ◽  
...  

Recently, we successfully transplanted an autograft, or major histocompatibility complex (MHC)-matched allografts, from induced-pluripotent-stem-cell-derived retinal pigment epithelial (iPSC-RPE) cells in patients with age-related macular degeneration. However, there was an issue regarding immune rejection after transplantation. In this study, we established a preoperational in vitro “drug–lymphocytes–grafts immune reaction (Drug-LGIR)” test to determine the medication for immune rejection using host immunocompetent cells (lymphocytes) and transplant cells (target iPSC-RPE cells) together with different medications. The adequacy of the test was assessed by in vivo transplantation in monkey models together with medication based on in vitro data. In the results of Drug-LGIR tests, some drugs exhibited significant suppression of RPE cell-related allogeneic reactions, while other drugs did not, and the efficacy of each drug differed among the recipient monkeys. Based on the results of Drug-LGIR, we applied cyclosporine A or local steroid (triamcinolone) therapy to two monkeys, and successfully suppressed RPE-related immune rejections with RPE grafts, which survived without any signs of rejection under drug administration. We propose that our new preoperational in vitro Drug-LGIR test, which specifies the most efficacious medication for each recipient, is useful for controlling immune attacks with personalized treatment for each patient after retinal transplantation.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Xiaojuan Liu ◽  
Aisong Guo ◽  
Yuanyuan Tu ◽  
Wendie Li ◽  
Lele Li ◽  
...  

AbstractWet age-related macular degeneration, which is characterized by choroidal neovascularization (CNV) and induces obvious vision loss. Vascular endothelial growth factor (VEGF) family member VEGF-A (also named as VEGF) and its receptor VEGFR2 contribute to the pathogenesis of CNV. Choroidal endothelial cells (CECs) secret C–C motif chemokine ligand 2 (CCL2), which attracts macrophages to CNV lesion and promotes macrophage M1 polarization. Accordingly, infiltrating macrophages secret inflammatory cytokines to promote CNV. In vivo, intravitreal injection of fruquintinib (HMPL-013), an antitumor neovascularization drug, alleviated mouse CNV formation without obvious ocular toxicity. Meanwhile, HMPL-013 inhibited VEGF/VEGFR2 binding in CECs and macrophages, as well as macrophage M1 polarization. In vitro, noncontact coculture of human choroidal vascular endothelial cells (HCVECs) and macrophages under hypoxia conditions was established. HMPL-013 downregulated VEGF/VEGFR2/phosphoinositide-3-kinase/protein kinase B (AKT)/nuclear factor kappa B pathway and CCL2 secretion in HCVECs, as well as VEGF/VEGFR2-induced macrophage M1 polarization under hypoxia condition. In addition, HMPL-013 inhibited HCEVC derived CCL2-induced macrophage migration and M1 polarization, along with macrophage M1 polarization-induced HCVECs proliferation, migration, and tube formation. Altogether, HMPL-013 alleviated CNV formation might via breaking detrimental cross talk between CECs and macrophages.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haibo Wang ◽  
Eric Kunz ◽  
Gregory J. Stoddard ◽  
William W. Hauswirth ◽  
M. Elizabeth Hartnett

Abstract Age-related macular degeneration (AMD) is a multifactorial chronic disease that requires long term treatment. Gene therapy is being considered as a promising tool to treat AMD. We found that increased activation of Rap1a in the retinal pigment epithelium (RPE) reduces oxidative signaling to maintain barrier integrity of the RPE and resist neural sensory retinal angiogenesis from choroidal endothelial cell invasion. To optimally deliver constitutively active Rap1a (CARap1a) into the RPE of wild type mice, self-complementary AAV2 (scAAV2) vectors driven by two different promoters, RPE65 or VMD2, were generated and tested for optimal active Rap1a expression and inhibition of choroidal neovascularization (CNV) induced by laser injury. scAAV2-VMD2, but not scAAV2-RPE65, specifically and efficiently transduced the RPE to increase active Rap1a protein in the RPE. Mice with increased Rap1a from the scAAV2-VMD2-CARap1a had a significant reduction in CNV compared to controls. Increased active Rap1a in the RPE in vivo or in vitro inhibited inflammatory and angiogenic signaling determined by decreased activation of NF-κB and expression of VEGF without causing increased cell death or autophagy measured by increased LCA3/B. Our study provides a potential future strategy to deliver active Rap1a to the RPE in order to protect against both atrophic and neovascular AMD.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sydney Waller ◽  
Sheik Pran Babu Sardar Pasha ◽  
Nathan Lambert-Cheatham ◽  
Timothy W. Corson

Background and Hypothesis: Ocular neovascularization, characterized by the abnormal growth of new blood vessels, underlies blindness-inducing diseases such as wet age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR). This neovascularization can be either choroidal (in the case of wet AMD) or retinal (in the case of PDR). Inhibition of vascular endothelial growth factor is the target of current FDA approved therapies, however the need for intravitreal injections poses a drawback to such treatments. Furthermore, many patients are non-responders or refractory. Given this, the discovery of novel therapeutic targets is warranted. Ferrochelatase (FECH) is an enzyme involved in heme synthesis. The Corson lab has previously shown FECH to be necessary for angiogenesis both in vitro and in vivo. The Corson lab has been successful in developing novel compounds that inhibit FECH in vitro, based on high-throughput screening hits. The objective of this project was to test one such novel FECH inhibitor in a choroidal neovascularization mouse model. Experimental Design: FECH inhibition was investigated in the laser-induced choroidal neovascularization model. This model involved creating a laser-induced lesion into the retinal pigment epithelium/choroid of mice aged 6-8 weeks; this promotes neovascularization. The FECH inhibitor compound was delivered once intravitreally at the time of the laser. Neovascularization was analyzed in vivo using optical coherence tomography and fluorescein angiography one and two weeks after laser, then quantified ex vivo by isolectin staining. Results: There was a trend toward decreased ocular neovascularization with the administration of a FECH inhibitor, as measured by optical coherence tomography seven days after laser treatment. However, further analyses are ongoing to validate this finding. Conclusion and Potential Impact: The administration of a FECH inhibitor compound intravitreally may result in a decrease in CNV. This may be useful as it could lead to FECH serving as a target for future therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8890
Author(s):  
Hiroto Yasuda ◽  
Miruto Tanaka ◽  
Anri Nishinaka ◽  
Shinsuke Nakamura ◽  
Masamitsu Shimazawa ◽  
...  

Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.


Sign in / Sign up

Export Citation Format

Share Document