scholarly journals Clean Energy Utilization Technology in the Transformation of Urban Existing Residence in China

2020 ◽  
Author(s):  
Li Zhao ◽  
Wei Chen ◽  
Qiong Li ◽  
WeiWei Wu

Abstract Clean energy substitution technology of existing residential buildings in cities is an inevitable choice for sustainable development and low-carbon ecological city construction. In this paper, the current status of energy-saving renovation and renewable energy application of existing residential buildings in various cities in China is summarized by using statistical analysis method. According to different climatic zones of existing urban areas, the production and consumption of conventional energy (e.g. electricity, gas) and new energy (e.g. solar energy and air energy) are analyzed, and the energy consumption of buildings in existing urban residential areas is analyzed based on STIRPAT model principle. The influencing factors are modeled and analyzed quantitatively. The function relationship between energy consumption of existing residential buildings and influencing factors is analyzed by Ridge Regression with R software. The research results show that the areas with energy-saving modification area of existing buildings in China exceeding 10 million m2 by 2018 include: Xinjiang, Inner Mongolia and Shandong Province; based on data analysis of 2015-2017 in China with different climatic zones, the nuclear power generation capacity in hot summer and warm winter areas is ahead of other areas and the power generation capacity is increasing year by year; the wind power and solar power generation capacity in cold areas and cold areas is comparable. Strong and power generation also increases year by year; the proportion of clean energy generation in total power generation in each region is still small; the annual power generation of clean energy in each region is positively related to the total power generation. Based on STIRPAT model analysis, compared with 2009, urban residential energy consumption increased by 43.6% in 2016.Natural gas-based clean energy has also increased from 7.9% to 13.4%.But still cannot meet the demand of energy consumption of urban residential. The research results can provide basic data support for planning and implementation of clean energy upgrading and transformation system in existing urban residential areas in China.

2014 ◽  
Vol 525 ◽  
pp. 355-360
Author(s):  
Wei Zheng Kong ◽  
Bi Bin Huang ◽  
Qiong Hui Li ◽  
Xiao Lu Wang

In this paper, the change of fossil energy consumption, carbon dioxide (CO2) and pollutant emissions are calculated when petroleum based vehicles (PBVs) are taken place by EVs based upon the full-cycle energy efficiency theory with the energy efficiency measured from well to wheel.. Calculation results show that the fossil energy consumption, CO2, monoxide (CO) and hydrocarbon (HC) emissions can be reduced with the substitution of EVs for vehicles that burn gasoline (GVs), but nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions increase. When vehicles that burn diesel (DVs) are replaced by EVs, the emissions of pollutants except SO2 will be reduced, but the emissions of CO2 and SO2 will increase. Considering the proportion of coal-fired power generation to the total power generation in China, the goal of energy conservation and emission reduction cannot be perfectly achieved by the substitution of PBVs by EVs. Therefore, the proportion of clean energy generation should be increased in China and technological updating of coal-fired power plants for reducing CO2 and pollutant emissions are necessary as well. Besides, GVs, other than DVs, should be replaced by EVs from the perspective of energy conservation and CO2 emission.


Author(s):  
Hui Tang

Energy consumption in smart cities relates to every energy consumed to carry out an activity, produce something, or exist in a structure. The most common measurement of energy efficiency is energy consumption per square meter in city residential areas. The states’ problematic energy consumption characteristics in smart cities may include climatic change, rainfall issues, water scarcity, and electricity generation. Thus, based on the states of households, an expanded proposed system of statistic determination impact conversion by positive, accurate technology (STIRPAT) model has been developed. STIRPAT model is collaborative research that aims to learn about the dynamic connections between human systems and the surrounding environment. There are two methods of the STIRPAT model to satisfy the characteristic of the proposed approach. The energetic counseling framework is an emerging technique that overcomes climatic change, electricity generation, and rainfall issues by sensing it in the environment. An algorithmic approach of the standard genetic method offers to conclude the problems into a cloud block mechanism for visualizing the states. Thus, the integrated technique of these two methods shows the factual implementation to overcome the statistical problems. Further research shows that, since the significant effect had been taken into account, the energy consumption per square meter in metropolitan residential buildings peak occurred eleven years later than without considering the dilution effect. The performance ratio of the STIRPAT model is estimated to be 98.3% by comparing with overall researches.


2020 ◽  
Author(s):  
Li Zhao ◽  
Wei Chen ◽  
Qiong Li ◽  
WeiWei Wu

Abstract Clean energy substitution technology of existing residential buildings in cities is an inevitable choice for sustainable development and low-carbon ecological city construction. In this paper, the current status of energy-saving renovation and renewable energy application of existing residential buildings in various cities in China is summarized by using statistical method. The geographical distribution of clean energy power generation in primary energy production has been deeply explored in China. According to different climatic division of urban existing residence, the clean energy production and consumption are analyzed and predicted based on STIRPAT model. The results shows that the energy consumption of urban residential buildings in 2016 has increases by 43.6% compared with 2009. Clean energy has also increased from 7.9% to 13.4%. Different climate regions have different advantages in clean energy. Nuclear power generation is ahead of other regions in hot summer and warm winter regions, and wind power and solar power generation are strong in severe cold and cold regions. The results can provide basic data support for planning and implementation of clean energy upgrading and transformation system in urban existing residences in China.


Author(s):  
Li Zhao ◽  
Wei Chen ◽  
Qiong Li ◽  
Weiwei Wu

AbstractClean-energy substitution technology for existing residential buildings in cities is an inevitable choice for sustainable development and low-carbon ecological city construction. In this paper, the current status of energy-saving renovation and renewable-energy applications for existing residential buildings in various cities in China was summarized by using statistical methods. The geographical distribution of clean-energy power generation in primary energy production in China was explored in depth. According to different climatic divisions for existing urban residences, clean-energy production and consumption were analyzed and predicted based on the STIRPAT model. The results show that the energy consumption of urban residential buildings in 2016 increased by 43.6% compared with 2009, and the percentage of clean energy also increased from 7.9% to 13.4%. Different climatic regions have different advantages regarding clean energy: nuclear power generation leads in the region that experiences hot summers and warm winters, whereas wind and solar power generation lead in the cold and severely cold regions. The present results provide basic data support for the planning and implementation of clean-energy upgrading and transformation systems in existing urban residences in China.


2021 ◽  
Vol 11 (2) ◽  
pp. 542
Author(s):  
Jaqueline Litardo ◽  
Massimo Palme ◽  
Rubén Hidalgo-León ◽  
Fernando Amoroso ◽  
Guillermo Soriano

This paper compares the potential for building energy saving of various passive and active strategies and on-site power generation through a grid-connected solar photovoltaic system (SPVS). The case study is a student welfare unit from a university campus located in the tropical climate (Aw) of Guayaquil, Ecuador. The proposed approach aims to identify the most effective energy saving strategy for building retrofit in this climate. For this purpose, we modeled the base line of the building and proposed energy saving scenarios that were evaluated independently. All building simulations were done in OpenStudio-EnergyPlus, while the on-site power generation was carried out using the Homer PRO software. Results indicated that the incorporation of daylighting controls accounted for the highest energy savings of around 20% and 14% in total building energy consumption, and cooling loads, respectively. Also, this strategy provided a reduction of about 35% and 43% in total building energy consumption, and cooling loads, respectively, when combined with triple low-e coating glazing and active measures. On the other hand, the total annual electric energy delivered by the SPVS (output power converter) was 66,590 kWh, from where 48,497 kWh was supplied to the building while the remaining electricity was injected into the grid.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6611
Author(s):  
Kazui Yoshida ◽  
Hom B. Rijal ◽  
Kazuaki Bohgaki ◽  
Ayako Mikami ◽  
Hiroto Abe

A residential cogeneration system (CGS) is highlighted because of its efficient energy usage on both the supplier and consumer sides. It generates electricity and heat simultaneously; however, there is insufficient information on the efficiency according to the condition of usage. In this study, we analysed the performance data measured by the home energy management system (HEMS) and the lifestyle data of residents in a condominium of 356 flats where fuel cell CGS was installed in each flat. The electricity generated by CGS contributed to an approximately 12% reduction in primary energy consumption and CO2 emission, and the rate of generation by the CGS in the electric power demand (i.e., contribution rate) was approximately 38%. The electricity generation was mainly affected by the use of electricity up to 4 MWh/household/year. Gas or water use also impacted electric power generation, with water use as the primary factor affecting the contribution rate. Electric power generation changes monthly, mainly based on the water temperature. From these results, we confirmed that a CGS has substantial potential to reduce energy consumption and CO2 emission in condominiums. Thus, it is recommended for installation of fuel cell CGS in existing and new buildings to contribute to the energy-saving target of the Japanese Government in the residential sector.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingxin Gao ◽  
Xiaoyang Zhong ◽  
Weiguang Cai ◽  
Hong Ren ◽  
Tengfei Huo ◽  
...  

Abstract Urban residential buildings make large contributions to energy consumption. Energy consumption per square meter is most widely used to measure energy efficiency in urban residential buildings. This study aims to explore whether it is an appropriate indicator. An extended STIRPAT model was used based on the survey data from 867 households. Here we present that building area per household has a dilution effect on energy consumption per square meter. Neglecting this dilution effect leads to a significant overestimation of the effectiveness of building energy savings standards. Further analysis suggests that the peak of energy consumption per square meter in China’s urban residential buildings occurred in 2012 when accounting for the dilution effect, which is 11 years later than it would have occurred without considering the dilution effect. Overall, overlooking the dilution effect may lead to misleading judgments of crucial energy-saving policy tools, as well as the ongoing trend of residential energy consumption in China.


Sign in / Sign up

Export Citation Format

Share Document