scholarly journals Failure Mechanism of Rock Specimens with a Notched Hole Under Compression - A Numerical Study

Author(s):  
Amin Manouchehrian ◽  
Pinnaduwa H.S.W. Kulatilake ◽  
Rui Wu

Abstract Discontinuities are natural structures that exist in rocks and can affect the stability of rock structures. In this article, the influence of notch presence on the failure evolution around a hole in compressed rock specimens is investigated numerically. Firstly, the uniaxial compressive test on a rock specimen with a circular hole is modeled and the failure evolution in the specimen is simulated. In a separate model, notches are created at the surface of the hole. Results show that when the notches are created in the model, failure zone around the hole is transferred to a distance away from the surface of the hole. In addition, a parametric study is carried out to investigate the influence of the notch length and the confining pressure on the fracturing behavior of the specimen. Numerical results presented in this article indicate that the presence of notches at the surface of the hole and their dimensions can affect the fracturing mechanism of the specimen. In some cases, the failure at the boundary of the hole is prevented when the notches of certain dimensions are added to the hole. The insights gained from this numerical study may be helpful to control the failure around underground excavations.

2021 ◽  
Vol 11 (17) ◽  
pp. 7797
Author(s):  
Amin Manouchehrian ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Rui Wu

Discontinuities are natural structures that exist in rocks and can affect the stability of rock structures. In this article, the influence of notch presence on the strength and failure evolution around a hole in compressed rock specimens is investigated numerically. Firstly, the uniaxial compressive test on a rock specimen with a circular hole is modeled, and the failure evolution in the specimen is simulated. In a separate model, notches are created at the surface of the hole. Results show that, when the notches are created in the model, a failure zone around the hole is transferred to a distance away from the surface of the hole. In addition, a parametric study is carried out to investigate the influence of the notch length and the confining pressure on the fracturing behavior of the specimen. Numerical results presented in this article indicate that the presence of notches at the surface of the hole and their dimensions can affect the fracturing mechanism of the specimen. In some cases, the failure at the boundary of the hole is prevented when the notches of certain dimensions are added to the hole. The insights gained from this numerical study may be helpful to control the failure around underground excavations.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2014 ◽  
Vol 755 ◽  
pp. 705-731 ◽  
Author(s):  
Sasan Sarmast ◽  
Reza Dadfar ◽  
Robert F. Mikkelsen ◽  
Philipp Schlatter ◽  
Stefan Ivanell ◽  
...  

AbstractTwo modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral triggers instabilities, leading to breakdown of the wake. Based on the grid configurations and the type of excitations, two basic flow cases, symmetric and asymmetric, are identified. In the symmetric setup, we impose a 120° symmetry condition in the dynamics of the flow and in the asymmetric setup we calculate the full 360° wake. Different cases are subsequently analysed using dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). The results reveal that the main instability mechanism is dispersive and that the modal growth in the symmetric setup arises only for some specific frequencies and spatial structures, e.g. two dominant groups of modes with positive growth (spatial structures) are identified, while breaking the symmetry reveals that almost all the modes have positive growth rate. In both setups, the most unstable modes have a non-dimensional spatial growth rate close to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\pi /2$ and they are characterized by an out-of-phase displacement of successive helix turns leading to local vortex pairing. The present results indicate that the asymmetric case is crucial to study, as the stability characteristics of the flow change significantly compared to the symmetric configurations. Based on the constant non-dimensional growth rate of disturbances, we derive a new analytical relationship between the length of the wake up to the turbulent breakdown and the operating conditions of a wind turbine.


Author(s):  
Thiago S. Hallak ◽  
José F. Gaspar ◽  
Mojtaba Kamarlouei ◽  
Miguel Calvário ◽  
Mário J. G. C. Mendes ◽  
...  

This paper presents a study regarding a novel hybrid concept for both wind and wave energy offshore. The concept resembles a semi-submersible wind platform with a larger number of columns. Wave Energy Devices such as point absorbers are to be displayed around the unit, capturing wave energy while heaving and also enhancing the stability of the platform. In this paper, a first numerical study of the platform’s hull, without Wave Energy Converters, is carried out. Experiments in wave basin regarding the same unit have been conducted and the results are presented and compared to the numerical ones. Both stability and seakeeping performances are assessed and compared.


2021 ◽  
Vol 50 (6) ◽  
pp. 1799-1814
Author(s):  
Norazak Senu ◽  
Nur Amirah Ahmad ◽  
Zarina Bibi Ibrahim ◽  
Mohamed Othman

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.


Author(s):  
Fayçal Hammami ◽  
Nader Ben Cheikh ◽  
Brahim Ben Beya

This paper deals with the numerical study of bifurcations in a two-sided lid driven cavity flow. The flow is generated by moving the upper wall to the right while moving the left wall downwards. Numerical simulations are performed by solving the unsteady two dimensional Navier-Stokes equations using the finite volume method and multigrid acceleration. In this problem, the ratio of the height to the width of the cavity are ranged from H/L = 0.25 to 1.5. The code for this cavity is presented using rectangular cavity with the grids 144 × 36, 144 × 72, 144 × 104, 144 × 136, 144 × 176 and 144 × 216. Numerous comparisons with the results available in the literature are given. Very good agreements are found between current numerical results and published numerical results. Various velocity ratios ranged in 0.01≤ α ≤ 0.99 at a fixed aspect ratios (A = 0.5, 0.75, 1.25 and 1.5) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation. The stability analysis depending on the aspect ratio, velocity ratios α and the Reynolds number when transition phenomenon occurs is considered in this paper.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Liu ◽  
Wen Wan ◽  
Yu Chen ◽  
Jun Wang

Laboratory and numerical study tests were conducted to investigate the dynamic indentation characteristics for various spacings and indentation depths. First, laboratory tests indicate that the increase in the indentation depth first resulted in enlarged groove volumes, caused by fiercer rock breakages between indentations for a fixed spacing; then, the groove volume slightly increased for further increase in indentation depth, whereas the increase in spacing restrained rock breakages and resulted in shrunken grooves. In addition, the numerical study agreed well with laboratory tests that small chips formed at the shallow part of the rock specimen at the early indentation stage, and then, larger chips formed by the crack propagation at deeper parts of the rock specimens when the indentation depth increased. With further increase in indentation depth, crushed powders instead of chips formed. Moreover, the numerical analysis indicates that crack propagation usually leads to the decrease of the indentation force and the dissipation of the stress concentrations at crack tips, whereas the cessation of crack propagation frequently resulted in the increase of the indentation force and the stress concentrations at crack tip with the increase in indentation depth.


Sign in / Sign up

Export Citation Format

Share Document