scholarly journals Isolated Skyrmion, Skyrmion Lattice, and Antiskyrmion Lattice Creation Through Magnetization Reversal in Co/Pd Nanostructure

Author(s):  
Sateesh Kandukuri ◽  
satya narayana murthy v ◽  
Thiru Vikraman P K

Abstract Skyrmion and antiskyrmion spin textures are axisymmetric inhomogeneous localized objects with distinct chirality in magnetic systems. These spin textures are potential candidates for the next generation energy-efficient spintronic applications due to their unique topological properties. Controlled and effective creation of the spin textures is required to use in conventional and neuromorphic computing applications. Here we show the creation of an isolated skyrmion, skyrmion lattice, and antiskyrmion lattice by the magnetization reversal in Co/Pd multilayer nanostructure using spin-polarized current. The spin textures' stability depends on the spin-polarized current density, current pulse width, and Dzyaloshinskii-Moriya interaction (DMI). Antiskyrmions are evolved during the formation of a single skyrmion and skyrmion lattice. Skyrmion and antiskyrmion lattices together are observed for lower pulse width, 0.05 ns. Our micromagnetic studies suggest that the two distinct lattice phases' evolution could help to design the topological spin textures-based devices.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sateesh Kandukuri ◽  
V. Satya Narayana Murthy ◽  
P. K. Thiruvikraman

AbstractSkyrmion and antiskyrmion spin textures are axisymmetric inhomogeneous localized objects with distinct chirality in magnetic systems. These spin textures are potential candidates for the next generation energy-efficient spintronic applications due to their unique topological properties. Controlled and effective creation of the spin textures is required to use in conventional and neuromorphic computing applications. Here we show by micromagnetic simulations creating an isolated skyrmion, skyrmion lattice and antiskyrmion lattice through the magnetization reversal in Co/Pd multilayer nanostructure using spin-polarized current. The spin textures' stability depends on the spin-polarized current density, current pulse width, and Dzyaloshinskii–Moriya interaction (DMI). Antiskyrmions are evolved during the formation of a single skyrmion and skyrmion lattice. Skyrmion and antiskyrmion lattices together are observed for lower pulse width, 0.05 ns. Our micromagnetic studies suggest that the two distinct lattice phases' evolution could help to design the topological spin textures-based devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kacho Imtiyaz Ali Khan ◽  
Naveen Sisodia ◽  
P. K. Muduli

AbstractWe numerically investigate the ultrafast nucleation of antiferromagnetic (AFM) skyrmion using in-plane spin-polarized current and present its key advantages over out-of-plane spin-polarized current. We show that the threshold current density required for the creation of AFM skyrmion is almost an order of magnitude lower for the in-plane spin-polarized current. The nucleation time for the AFM skyrmion is found to be $$12-7$$ 12 - 7  ps for the corresponding current density of 1–$$3\times 10^{13}~\text{A/m}^{2}$$ 3 × 10 13 A/m 2 . We also demonstrate ultrafast nucleation of multiple AFM skyrmions that is possible only with in-plane spin polarized current and discuss how the current pulse width can be used to control the number of AFM skyrmions. The results show more than one order of magnitude improvement in energy consumption for ultrafast nucleation of AFM skyrmions using in-plane spin-polarized current, which is promising for applications such as logic gates, racetrack memory, and neuromorphic computing.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Takaaki Dohi ◽  
Samik DuttaGupta ◽  
Shunsuke Fukami ◽  
Hideo Ohno

AbstractSkyrmion, a topologically-protected soliton, is known to emerge via electron spin in various magnetic materials. The magnetic skyrmion can be driven by low current density and has a potential to be stabilized in nanoscale, offering new directions of spintronics. However, there remain some fundamental issues in widely-studied ferromagnetic systems, which include a difficulty to realize stable ultrasmall skyrmions at room temperature, presence of the skyrmion Hall effect, and limitation of velocity owing to the topological charge. Here we show skyrmion bubbles in a synthetic antiferromagnetic coupled multilayer that are free from the above issues. Additive Dzyaloshinskii-Moriya interaction and spin-orbit torque (SOT) of the tailored stack allow stable skyrmion bubbles at room temperature, significantly smaller threshold current density or higher speed for motion, and negligible skyrmion Hall effect, with a potential to be scaled down to nanometer dimensions. The results offer a promising pathway toward nanoscale and energy-efficient skyrmion-based devices.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


1999 ◽  
Vol 62 (1) ◽  
pp. 117-123 ◽  
Author(s):  
S. P. TSYBENKO

A new mechanism for the formation of pinching plasma instability related to a tangential discontinuity is discussed. With this in mind we use a simple model of the Davydov–Zakharov class. It appears that there is a strong dependence of the instability increment on current density, resulting from the corresponding dispersion relation. Modulation of a current pulse is shown to be a possible way of stabilizing powerful discharges.


2012 ◽  
Vol 9 (8-9) ◽  
pp. 1844-1847 ◽  
Author(s):  
Y. Harada ◽  
K. Ando ◽  
S. Nakagawa ◽  
H. Sakamoto ◽  
T. Abe ◽  
...  
Keyword(s):  

2021 ◽  
Vol 6 (3) ◽  
pp. 167-178
Author(s):  
Artem D. Talantsev ◽  
Ekaterina I. Kunitsyna ◽  
Roman B. Morgunov

In this paper, we present the study of domain structure accompanying interstate transitions in Pt/Co/Ir/Co/Pr synthetic ferrimagnet (SF) of 1.1 nm thick and 0.6 – 1.0 nm thin ferromagnetic Co layers. Variation in the thickness of the thin layer causes noticeable changes in the domain structure and mechanism of magnetization reversal revealed by MOKE (Magneto-Optical Kerr Effect) technique. Magnetization reversal includes coherent rotation of magnetization of the ferromagnetic layers, generation of magnetic nuclei, spreading of domain walls (DW), and development of areas similar with strip domains, dependently on thickness of the thin layer. Inequivalence of the direct and backward transitions between magnetic states of SF with parallel and antiparallel magnetizations was observed in sample with thin layer thicknesses 0.8 nm and 1.0 nm. Asymmetry of the transition between these states is expressed in difference fluctuation fields and shapes of reversal magnetization nucleus contributing to the correspondent forward and backward transitions. We proposed simple model based on asymmetry of Dzyaloshinskii–Moriya interaction. This model explains competition between nucleation and domain wall propagation due to increase/decrease of the DW energy dependently on direction of the spin rotation into the DW in respect to external field.


2015 ◽  
Vol 117 (17) ◽  
pp. 17B720 ◽  
Author(s):  
Shujun Chen ◽  
Senfu Zhang ◽  
Qiyuan Zhu ◽  
Xianyin Liu ◽  
Chendong Jin ◽  
...  

2016 ◽  
Vol 58 (5) ◽  
pp. 946-951 ◽  
Author(s):  
N. I. Nurgazizov ◽  
D. A. Bizyaev ◽  
A. A. Bukharaev

2020 ◽  
Vol 515 ◽  
pp. 167291
Author(s):  
Huanan Li ◽  
Dan Wang ◽  
Yifan Zhao ◽  
Yue Hu ◽  
Ziwei Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document