scholarly journals Identification of proteins involved in response to cold stress and genome-wide identification and analysis of the APX gene family in winter rapeseed (Brassica rapa L.)

Author(s):  
Li Ma ◽  
Jing Bai ◽  
Jia Xu ◽  
Weiliang Qi ◽  
Haiyun Li ◽  
...  

Abstract Winter Brassica rapa is an important oilseed crop in northern China, but the mechanism of its cold resistance remains unclear. APX plays important roles in response of this plant to abiotic stress and in scavenging free radicals. In this study, 59 DEPs were isolated and identified from winter B. rapa and B. napus using bidirectional electrophoresis, and APX was found to be differentially expressed in these two species. Therefore, the roles of APX proteins in the cold response and superoxide metabolism pathways in both rapeseed species were further investigated. And comprehensive analysis of phylogeny, chromosome distribution, motif identification, sequence structure, gene duplication, and RNA-seq expression profile in APX gene family. Most of the BrAPX genes were specifically expressed under low temperature stress and behaved significantly differently in cold-tolerant and cold-sensitive varieties. qPCR was also used to verify the differences in expression between these two varieties under cold, freezing, drought and heat stress, and these candidate genes and proteins may play important roles in the response of B. rapa to low temperature stress and provide new information for the elucidation of the cold resistance mechanism in B. rapa.

2017 ◽  
Vol 43 (4) ◽  
pp. 620
Author(s):  
Li MA ◽  
Jin-Hai YUAN ◽  
Wan-Cang SUN ◽  
Zi-Gang LIU ◽  
Xiu-Cun ZENG ◽  
...  

2019 ◽  
Author(s):  
Xiaolong Wang ◽  
Huiqing Jin ◽  
Kai Meng ◽  
Zhenyu Jia ◽  
Shiyuan Yan ◽  
...  

Abstract Abstract Background: Alfalfa ( Medicago sativa ) is a perennial forage crop widely cultivated in northern China. The root crown of alfalfa is an important storage organ in the process of wintering, and it is closely related to the winter hardiness of alfalfa. At present, the specific molecular mechanism of response to winter hardiness in alfalfa root crown is unclear. The transcriptome database created by RNA sequencing (RNA-seq) is widely used to identify the critical genes related to winter hardiness. Results: The transcriptomes of alfalfa varieties, such as “Lomgmu 806” (with high winter survival rate) and “Sardi” (with low winter survival rate) have been sequenced in the study. Among the identified 57,712 unigenes, 2,299 differentially expressed genes (DEGs) were up-regulated, and 2,143 unigenes were down-regulated in the Lomgmu 806 vs Sardi root crown. The KEGG pathway annotations showed that 1,159 unigenes were mainly annotated to 116 pathways. Seven DEGs belonging to “plant hormone signaling transduction”, “peroxidase” pathway and transcription factors family (MYB, B3, AP2/ERF, WRKY) genes involved in alfalfa winter hardiness. Among them, the expression patterns of seven DEGs were verified by real-time quantitative PCR (RT-qPCR) analyses, which verified the reliable results of transcriptome sequencing analyses. Conclusions: RNA-Seq was used to discover genes associated with the wintering differences between alfalfa varieties. The transcriptome data showed that the gene regulation response of alfalfa to low temperature stress, which provides a valuable resource for further identification and functional analysis of candidate genes for winter hardiness of alfalfa. In addition, these data provide references for future study of genetic breeding and winter hardiness in alfalfa.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10159
Author(s):  
Wei Wang ◽  
An Shao ◽  
Erick Amombo ◽  
Shugao Fan ◽  
Xiao Xu ◽  
...  

As upstream components of MAPK cascades, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascades. MAPK cascades are universal modules of signal transduction in eukaryotic organisms and play crucial roles in plant development processes and in responses to biotic and abiotic stress and signal transduction. Members of the MAPKKK gene family have been identified in several plants,however, MAPKKKs have not been systematically studied in bermudagrass (Cynodon dactylon L.). In this study, 55 potential CdMAPKKKs were produced from bermudagrass transcriptome data, of which 13 belonged to the MEKK, 38 to the Raf, and 4 to the ZIK subfamily. Multiple alignment and conserved motif analysis of CdMAPKKKs supported the evolutionary relationships inferred from phylogenetic analyses. Moreover, the distribution pattern in Poaceae species indicated that members of the MAPKKK family were conserved among almost all diploid species, and species-specific polyploidy or higher duplication ratios resulted in an expansion of the MAPKKK family. In addition, 714 co-functional links which were significantly enriched in signal transduction, responses to temperature stimuli, and other important biological processes of 55 CdMAPKKKs were identified using co-functional gene networks analysis; 30 and 19 co-functional genes involved in response to cold or heat stress, respectively, were also identified. Results of promoter analyses, and interaction network investigation of all CdMAPKKKs based on the rice homologs suggested that CdMAPKKKs are commonly associated with regulation of numerous biological processes. Furthermore, 12 and 13 CdMAPKKKs were significantly up- and downregulated, respectively, in response to low temperature stress; among them, six CdMAPKKKs were significantly induced by low temperature stress, at least at one point in time. This is the first study to conduct identification and functional analysis of the MAPKKK gene family in bermudagrass, and our results provide a foundation for further research on the functions of CdMAPKKKs in response to low temperature stress.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
李瑞雪 LI Ruixue ◽  
金晓玲 JIN Xiaoling ◽  
胡希军 HU Xijun ◽  
汪结明 WANG Jieming ◽  
罗峰 LUO Feng ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 741 ◽  
Author(s):  
Song Chen ◽  
Xin Lin ◽  
Dawei Zhang ◽  
Qi Li ◽  
Xiyang Zhao ◽  
...  

NACs (NAM, ATAF1/2, and CUC2) are plant-specific transcription factors that play diverse roles in various plant developmental processes. In this study, we identified the NAC gene family in birch (Betula pendula) and further analyzed the function of BpNACs. Phylogenetic analysis reveals that the 114 BpNACs can be divided into seven subfamilies. We investigated the expression levels of these BpNACs in different tissues of birch including roots, xylem, leaves, and flowers, and the results showed that the BpNACs seem to be expressed higher in xylem and roots than leaves and flowers. In addition to tissue-specific expression analysis, we investigated the expression of BpNACs under low-temperature stress. A total of 21 BpNACs were differentially expressed under low-temperature stress, of which 17 were up-regulated, and four were down-regulated. Using the gene expression data, we reconstructed the gene co-expression network for the 21 low-temperature-responsive BpNACs. In conclusion, our results provide insight into the evolution of NAC genes in the B. pendula genome, and provide a basis for understanding the molecular mechanism for BpNAC-mediated cold responses in birch.


2019 ◽  
Author(s):  
Xiaolong Wang ◽  
Huiqing Jin ◽  
Kai Meng ◽  
Zhenyu Jia ◽  
Shiyuan Yan ◽  
...  

Abstract Background: Alfalfa ( Medicago sativa ) is a perennial forage crop widely cultivated in northern China. The root crown is an important storage organ of alfalfa, especially in the wintering process, as it is closely related to winter hardiness. However, the molecular mechanism underlying the winter hardiness of the alfalfa root crown remains unclear. To investigate these gaps in knowledge, the RNA sequencing (RNA-Seq) technology was used to identify critical genes related to winter hardiness. Results: In this study, the winter survival rate of the Lomgmu 806 variety was approximately 3.68-fold higher than that of the Sardi variety. We sequenced the transcriptomes of the root crown of the two alfalfa varieties. Among the 57,712 unigenes identified, 2,299 differentially expressed genes (DEGs) were upregulated, and 2,143 DEGs were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations showed that 1,159 unigenes were mainly annotated in 116 pathways. Seven DEGs belonging to the “plant hormone signalling transduction” pathway, the “peroxisome” pathway and transcription factor family (MYB, B3, AP2/ERF, and WRKY) and involved in alfalfa winter hardiness were identified. As a result, the expression patterns of seven DEGs were verified by real-time quantitative PCR (RT-qPCR) analyses, which verified the reliability of the RNA-Seq analyses. Conclusions: The RNA-Seq data revealed the gene regulation response of alfalfa to low-temperature stress, which provides a valuable resource for the further identification and functional analysis of candidate genes related to winter hardiness in alfalfa. Furthermore, these data provide references for future in-depth studies of winter hardiness mechanisms in alfalfa.


2020 ◽  
Author(s):  
Zhengda Zhang ◽  
Tao Liu ◽  
Zhen Kang ◽  
Jiwen Xu ◽  
Shichun Yang ◽  
...  

Abstract Background: Transcriptome sequencing was conducted to screen out genes that actively respond to exogenous 5-aminolevulinic acid (ALA) induction under low temperature stress. The study used two versions of the tomato genome database to strictly screen and identify tomato glutathione S-transferase (GST) gene families and carried out the related bioinformatics analysis of tomato GST gene family. The expression pattern of SlGST genes induced by exogenous application ALA under low temperature stress was also analysed. Related physiological indicators were determined, and related chemical stains were performed.Results: RNA sequencing (RNA-seq) results showed that the expression of SlGST gene was different under various treatments, and a large number of SlGST genes widely responded to ALA induction under low temperature stress. Sixty-nine full-length GST genes were identified by screening the two versions of tomato genome databases combined with protein domain analysis. Analysis of gene family phylogenetic tree divided the tomato GST gene family into eight subfamilies. Tandem replication of genes is one of the driving forces for the evolution of tomato GST gene family, and a large number of cis-acting elements are related to stress resistance on the promoter of the GST gene family. Exogenous ALA application under low temperature stress induces a broad response of tomato leaf SlGST gene (qRT-PCR verification), increases GST activity and decreases reactive oxygen species (ROS) accumulation.Conclusions: RNA sequencing results revealed that a large number of tomato GST genes are differentially expressed, and Sixty-nine GSTs are identified in the tomato genome. Tandem replication of genes is the driving force for 68 the evolution of tomato GST family, and the promoter contains a large number of cis-acting elements related to stress resistance. Test results show that exogenous ALA induces the expression of SlGST genes under low temperature stress, thereby increasing GST activity to eliminate the ROS produced under low temperature stress and increase the tomato tolerance.


Sign in / Sign up

Export Citation Format

Share Document