scholarly journals Cost-benefit Quantification of Leaf Carbon Economics to Disentangle Responses of Plant Assemblages to Deer Herbivory

Author(s):  
Yuki Wakatsuki ◽  
Keita Nishizawa ◽  
Akira S Mori

Abstract Although the plant carbon cost-benefit balance is known to be related to individual plant growth, reproduction, and population expansion, the association with plant community differences is not well understood. In this study, we examined how the leaf carbon cost-benefit metrics were associated with the assembly process of forest understory plant communities in areas highly affected by deer browsing. We calculated these metrics from plant physiologically parameters for 14 forest floor plant species growing in deer presence/absence site to detect the relationship between species dominance and leaf carbon cost-benefit metrics. As a result, the patterns of interspecific variation in benefit along the plant dominance rank differed in deer presence/absence sites, contributing to the marked differences in species composition and diversity observed at the two sites. In the absence of deer, where competition was the dominant determinant of plant community composition, carbon benefits among species were positively related to the plant dominance rank, indicating that species able to acquire more carbon were at an advantage. On the other hand, under deer herbivory, differences in carbon benefit between species were not strongly apparent and were not related to the plant dominance rank, indicating few differences in reproductive and expansion ability (plant fitness) between species. This process contributes to the high species diversity of plant communities observed in the presence of deer. Our results emphasize the possibility of connecting different fields of studies, physiological ecology, community ecology, and the plant carbon cost-benefit balance of single leaves to explain plant community composition differences.

Author(s):  
Yuan LIU ◽  
Wenchao Qi ◽  
Danni He ◽  
Yunrong Xiang ◽  
Jin Chun Liu ◽  
...  

Resource availability and heterogeneity are recognized as two essential environmental aspects to determine species diversity and community abundance. However, how resource availability and heterogeneity determine species diversity and community abundance in highly heterogeneous and most fragile karst landscapes is largely unknown. We examined the effects of resource availability and heterogeneity on plant community composition and quantified their relative contribution by variation partitioning. Then, a structural equation model (SEM) was used to further disentangle the multiple direct and indirect effects of resource availability on plant community composition. Species diversity was significantly influenced by the resource availability in shrubland and woodland but not by the heterogeneity in woodland. Abundance was significantly affected by both resource availability and heterogeneity, whereas variation partitioning results showed that resource availability explained the majority of the variance in abundance, and the contribution of resource heterogeneity was marginal. These results indicated that resource availability plays a more important role in determining karst plant community composition than resource heterogeneity. Our SEMs further found that the multiple direct and indirect processes of resource availability in determining karst species diversity and abundance were different in different vegetation types. Resource availability and heterogeneity both played a certain role in determining karst plant community composition, while the importance of resource availability far exceeded resource heterogeneity. We propose that steering community restoration and reconstruction should be highly dependent on resource availability, and multiple direct and indirect pathways of resource availability for structuring karst plant communities need to be taken into account.


2019 ◽  
Vol 15 (7) ◽  
pp. 20190280 ◽  
Author(s):  
Gabrielle Martin ◽  
Vincent Devictor ◽  
Eric Motard ◽  
Nathalie Machon ◽  
Emmanuelle Porcher

Latitudinal and altitudinal range shifts in response to climate change have been reported for numerous animal species, especially those with high dispersal capacities. In plants, the impact of climate change on species distribution or community composition has been documented mainly over long periods (decades) and in specific habitats, often forests. Here, we broaden the results of such long-term, focused studies by examining climate-driven changes in plant community composition over a large area (France) encompassing multiple habitat types and over a short period (2009–2017). To this end, we measured mean community thermal preference, calculated as the community-weighted mean of the Ellenberg temperature indicator value, using data from a standardized participatory monitoring scheme. We report a rapid increase in the mean thermal preference of plant communities at national and regional scales, which we relate to climate change. This reshuffling of plant community composition corresponds to a relative increase in the abundance of warm- versus cold-adapted species. However, support for this trend was weaker when considering only the common species, including common annuals. Our results thus suggest for the first time that the response of plant communities to climate change involves subtle changes affecting all species rare and common, which can nonetheless be detected over short time periods. Whether such changes are sufficient to cope with the current climate warming remains to be ascertained.


2008 ◽  
Vol 4 (4) ◽  
pp. 345-348 ◽  
Author(s):  
David Johnson ◽  
Gareth K Phoenix ◽  
J. Philip Grime

Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se .


2005 ◽  
Vol 83 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Jeffery P Dech ◽  
M Anwar Maun

The zonation of coastal dune plant communities from the beach to their inland margin is recognized worldwide; however, the cause of this pattern remains controversial because of the covariance of several environmental factors, such as sand burial, salt spray, and microclimate, along a gradient perpendicular to the shoreline. To minimize the confounding influence of this complex shore–inland gradient and determine the direct effects of burial on plant community composition, we examined stands along a burial gradient that extended parallel to the Lake Huron coastline, produced by variable blowout activity amongst a series of parabolic dunes comprising the second ridge inland from the coast. We used the point-quarter method and 1 m × 1 m plots to quantify overstorey and understorey plant communities in each parabolic dune stand and determined species importance, here defined as the sum of density, frequency, and dominance for the overstorey and the sum of frequency and dominance only for the understorey. Correspondence analyses of the species importance – dune stand matrices elucidated a pattern of plant community composition on the primary ordination axis that was strongly related to an index of burial activity (r2 = 0.40 and 0.87 for the overstorey and understorey, respectively). Burial was associated with changes in species richness and diversity, shifts in dominant species, and species replacement based on burial tolerance across the gradient. These data support the hypothesis that burial in sand dunes is a major causative factor of zonation, which can extend beyond the foredunes and include communities of woody species.Key words: coastal dunes, vegetation, zonation, woody plants, burial.


Author(s):  
Merdas Saifi ◽  
Yacine Kouba ◽  
Tewfik Mostephaoui ◽  
Yassine Farhi ◽  
Haroun Chenchouni

Despite many studies explored the effect of livestock grazing on plant communities the response of species composition and diversity to livestock grazing in arid rangelands remain ambiguous. This study examined the effects of livestock grazing vs grazing exclusion on plant communities in arid steppe rangelands of North Africa. Plant diversity of annual species perennial species and all species combined was measured and compared between grazed and grazing-excluded areas. We also verified whether the difference in plant community composition between the two management types was due to species spatial turnover or community nestedness. Besides the effects of livestock grazing on beta diversity at local among transects and landscape among sites scales were examined using the multiplicative diversity partitioning. Results revealed that livestock grazing significantly decreased the alpha diversity of all species combined and the diversity of annual plants. Livestock grazing induced a shift in plant community composition where the most of species composition variation ~74% was due to infrequent species replacement between the two management types rather than community sub setting ~26%. The analysis of beta diversity at different spatial scales revealed that livestock grazing significantly increased beta diversity at the local scale but decreased it at the landscape scale. Our findings suggest that livestock grazing in arid steppe rangelands increases the variation of plant composition at local spatial scale and engenders vegetation homogeneity at coarse spatial scale. Therefore, the implementation of appropriate management practices such as short-term grazing exclusion is mandatory to prevent these ecosystems from large scale biotic homogenization.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2021 ◽  
Author(s):  
Tanja Strecker ◽  
Annette Jesch ◽  
Dörte Bachmann ◽  
Melissa Jüds ◽  
Kevin Karbstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document