scholarly journals Polyphasic Taxonomy of Four Passalora-like Taxa Occurring on Fruit and Forest Trees

Author(s):  
Mounes Bakhshi ◽  
Rasoul Zare ◽  
Uwe Braun ◽  
Hossein Taheri

Abstract Species of Passalora s. lat. are eminent phytopathogenic fungi that cause generally leaf spot diseases on a broad variety of plants throughout the world. During our investigations exploring cercosporoid fungi associated with leaf spot symptoms of fruit and forest trees in northern and north-western Iran, several passalora-like infections were isolated from symptomatic leaves of different trees belonging to the Fabaceae, Malvaceae, Rosaceae and Ulmaceae. A polyphasic taxonomic approach by applying molecular data, morphological features and host data, was employed to identify the isolates. In a multi-gene phylogenetic analysis (LSU, ITS and RPB2), these isolates clustered in four clades in the Mycosphaerellaceae. The revealed taxa encompass Paracercosporidium microsorum on Tilia platyphyllos, Prathigadoides gleditsiae-caspicae gen. et. sp. nov. on Gleditsia caspica, Pruniphilomyces circumscissus on Prunus avium and Prunus cerasus, and Sirosporium celtidis on Celtis australis. The new genus Prathigadoides and its type species Prathigadoides gleditsiae-caspicae are molecularly distinct from all phylogenetically related genera, and some characteristics of the conidiophores and conidia differs from those of the morphologically similar species Prathigada condensata on the North America Gleditsia triacanthos.

Zootaxa ◽  
2017 ◽  
Vol 4236 (3) ◽  
pp. 401 ◽  
Author(s):  
PAULO A. V. BORGES ◽  
ISABEL R. AMORIM ◽  
SOFIA TERZOPOULOU ◽  
FRANÇOIS RIGAL ◽  
BRENT C. EMERSON ◽  
...  

Recent findings based on molecular data support the occurrence in the Azores of several independently evolving lineages of the beetle genus Tarphius Erichson, 1845 (Coleoptera: Zopheridae Solier, 1834) and higher species richness masked by cryptic diversity, needing formal taxonomic description. All Tarphius from the Azores are revised using an integrative taxonomic approach, using evidence from morphology, morphometrics and molecular data to delimit species. Our results reveal that Azorean Tarphius comprise at least five phyletic lineages, two of which share a similar morphology, despite being divergent at the molecular level. A total of four new species are described grouped into two complexes: i) two new species in the “complex tornvalli” with the new taxa Tarphius relictus sp. nov. (Terceira) and Tarphius furtadoi sp. nov. (São Jorge, Faial and Pico) and; ii) two new species in the “complex azoricus-wollastoni-depressus” with the new taxa Tarphius gabrielae sp. nov. (Pico) and Tarphius floresensis sp. nov. (Flores). Descriptions, photographs of holotypes and morphological details, and remarks on diagnostic features comparing similar species are presented. Additional information on the distribution and conservation status of the 12 described species in the archipelago is also provided. 


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


2008 ◽  
Vol 158 (3) ◽  
pp. 391-398 ◽  
Author(s):  
EVGENY V. MAVRODIEV ◽  
IRSHAD NAWCHOO ◽  
PAMELA S. SOLTIS ◽  
DOUGLAS E. SOLTIS
Keyword(s):  

Nematology ◽  
2016 ◽  
Vol 18 (4) ◽  
pp. 455-473 ◽  
Author(s):  
Dmitry M. Miljutin ◽  
Maria A. Miljutina

Acantholaimusis a species-rich genus of deep-sea nematodes, often with dozens of species found at the same locality but each represented by single or few individuals. Species discrimination by morphological characters in this genus is therefore often difficult due to transitional forms that may be referred to several species because of lack of data on intraspecific variability. The aim of this study was to evaluate the intraspecific variability of morphological characters that are most often used inAcantholaimustaxonomy, in order to distinguish those which are most informative for species differentiation. A reverse taxonomic approach was applied for initial species discrimination. Two loci, one each from small and large subunits of rRNA, were sequenced for 59Acantholaimusspecimens from two deep-sea locations. Twenty-seven Molecular Operational Taxonomic Units (MOTU) were identified, of which 12 were represented by more than one individual. These were then analysed for intraspecific variability in morphological characters. Some of the examined characters showed high intraspecific variability; specifically: length of cephalic setae; distance from anterior end to amphid; shape of anterior setae; position and arrangement of cervical setae. In the absence of genetic data, these characters should be used with caution for differential diagnoses or species discrimination. Other characters were more conservative within the same MOTU: body proportions; length of outer labial setae; amphidial diam.; appearance of lateral field; general arrangement of cervical setae; and shape of tail. These characters may be successfully used for species discrimination in the absence of molecular data.


2021 ◽  
pp. 269-278
Author(s):  
M. Lenguas Francavilla ◽  
L. Negrete ◽  
A. Martínez-Aquino ◽  
C. Damborenea ◽  
F. Brusa

Girardia Ball, 1974 is the most diverse and widely distributed genus of the family Dugesiidae (Platyhelminthes: Continenticola) in the Neotropical region. Seven out of the 52 species of the genus are known for Argentina. The Somuncurá Plateau is a region in northern Patagonia with several endemic flora and fauna, but little is known about the free-living Platyhelminthes. We describe two new species of Girardia partially inhabiting in sympatry in the Somuncurá Plateau: Girardia somuncura sp. nov. and Girardia tomasi sp. nov. The identification criteria that we followed was an integrative taxonomic approach based on morphological and molecular data. Thus, we used anatomical features focused on the reproductive system, together with a phylogenetic analysis, using a mitochondrial (COI barcode region) genetic marker. This study is the first phylogenetic analysis of the genus Girardia in which we include the southernmost representatives of America here described, thus making it possible to incorporate them in global phylogenies.


Zootaxa ◽  
2021 ◽  
Vol 4995 (2) ◽  
pp. 334-344
Author(s):  
QIAN ZHOU ◽  
FAHUI TANG ◽  
YUANJUN ZHAO

During a survey of parasitic ciliates in Chongqing, China, Trichodina matsu Basson & Van As, 1994 was isolated from gills of Tachysurus fulvidraco. Furthermore, the 18S rRNA gene and ITS-5.8S rRNA region of T. matsu were sequenced for the first time and applied for the species identification and comparison with similar species in the present study. Based on the morphological and molecular comparisons, the results indicate that T. matsu is an ectoparasite specific for the Siluriformes catfish. Based on the analyses of genetic distance, multiple sequence alignments, and phylogenetic analyses, no obvious differentiation within populations of T. matsu was found. In addition, the ‘Trichodina hyperparasitis’ (KX904933) in GenBank is a misidentification and appears to be conspecific with T. matsu according to the comparison of morphological and molecular data.  


2018 ◽  
Vol 32 (6) ◽  
pp. 1298 ◽  
Author(s):  
Feng Zhang ◽  
Daoyuan Yu ◽  
Mark I. Stevens ◽  
Yinhuan Ding

Integrative taxonomic approaches are increasingly providing species-level resolution to ‘cryptic’ diversity. In the absence of an integrative taxonomic approach, formal species validation is often lacking because of inadequate morphological diagnoses. Colouration and chaetotaxy are the most commonly used characters in collembolan taxonomy but can cause confusion in species diagnoses because these characters often have large intraspecific variation. Here, we take an integrative approach to the genus Dicranocentrus in China where four species have been previously recognised, but several members of the genus have been morphologically grouped as a species complex based on having paired outer teeth on unguis and seven colour patterns. Molecular delimitations based on distance- and evolutionary models recovered four candidate lineages from three gene markers and revealed that speciation events likely occurred during the late Neogene (4–13million years ago). Comparison of intact dorsal chaetotaxy, whose homologies were erected on the basis of first instar larva, further validated these candidates as formal species: D. gaoligongensis, sp. nov., D. similis, sp. nov., D. pallidus, sp. nov. and D. varicolor, sp. nov., and increase the number of Dicranocentrus species from China to eight. Our study further highlights the importance of adequate taxonomy in linking morphological and molecular characters within integrative taxonomy.


2009 ◽  
Vol 34 (3) ◽  
pp. 580-594 ◽  
Author(s):  
Anthony R. Magee ◽  
Ben-Erik van Wyk ◽  
Patricia M. Tilney ◽  
Stephen R. Downie

Generic circumscriptions and phylogenetic relationships of the Cape genera Capnophyllum, Dasispermum, and Sonderina are explored through parsimony and Bayesian inference analyses of nrDNA ITS and cpDNA rps16 intron sequences, morphology, and combined molecular and morphological data. The relationship of these genera with the North African genera Krubera and Stoibrax is also assessed. Analyses of both molecular data sets place Capnophyllum, Dasispermum, Sonderina, and the only southern African species of Stoibrax (S. capense) within the newly recognized Lefebvrea clade of tribe Tordylieae. Capnophyllum is strongly supported as monophyletic and is distantly related to Krubera. The monotypic genus Dasispermum and Stoibrax capense are embedded within a paraphyletic Sonderina. This complex is distantly related to the North African species of Stoibrax in tribe Apieae, in which the type species, Stoibrax dichotomum, occurs. Consequently, Dasispermum is expanded to include both Sonderina and Stoibrax capense. New combinations are formalized for Dasispermum capense, D. hispidum, D. humile, and D. tenue. An undescribed species from the Tanqua Karoo in South Africa is also closely related to Capnophyllum and the Dasispermum–Sonderina complex. The genus Scaraboides is described herein to accommodate the new species, S. manningii. This monotypic genus shares the dorsally compressed fruit and involute marginal wings with Capnophyllum, but is easily distinguished by its erect branching habit, green leaves, scabrous umbels, and fruit with indistinct median and lateral ribs, additional solitary vittae in each marginal wing, and parallel, closely spaced commissural vittae. Despite the marked fruit similarities with Capnophyllum, analyses of DNA sequence data place Scaraboides closer to the Dasispermum–Sonderina complex, with which it shares the erect habit, green (nonglaucous) leaves, and scabrous umbels.


Phytotaxa ◽  
2016 ◽  
Vol 270 (4) ◽  
pp. 231 ◽  
Author(s):  
NORBERT HOLSTEIN ◽  
JULIANA CHACÓN ◽  
HARTMUT H. HILGER ◽  
MAXIMILIAN WEIGEND

The genus Omphalodes (Boraginaceae) has recently been shown to be polyphyletic. Two distantly related lineages have already been segregated into the genera Memoremea (Central Europe) and Nihon (East Asia), respectively. We expanded the taxon sampling in the Omphalodeae and confirm that the genus is still paraphyletic to the two monotypic genera Selkirkia from the Juan Fernández Islands off the coast of Chile and Myosotidium from Chatham Island off the coast of New Zealand, plus two South American species currently assigned to Cynoglossum, and one species recently segregated from the latter genus as Mapuchea. Four clades are retrieved in a narrowly delimited Omphalodes group: 1) Iberodes, the annual southwestern European species of Omphalodes s.l. that have been recently segregated into this genus, 2) Omphalodes s.str., perennial western Eurasian species (including the type species of the genus), 3) the North American species of Omphalodes, and 4) the southern hemispheric Myosotidium as sister to a monophyletic group with Mapuchea plus the two other South American species of “Cynoglossum” and the island shrub Selkirkia berteroi. We argue that the taxa of this latter clade are best placed into an expanded genus Selkirkia. Selkirkia then represents a morphologically coherent entity with glochidiate nutlets. Its considerable difference in vegetative morphology to Myosotidium is easily explained by the highly divergent habitats the respective plants occupy. Lectotypifications, illustrations, and descriptions are provided for Myosotidium and the species of the expanded genus Selkirkia.


Zootaxa ◽  
2008 ◽  
Vol 1759 (1) ◽  
pp. 1 ◽  
Author(s):  
CORINNE M. UNRUH

A recent phylogenetic study of the scale insect tribe Iceryini (Hemiptera: Coccoidea: Monophlebidae) based on morphological and molecular data led to a revised generic classification, including redefinition of three genera, one of which was Crypticerya Cockerell. The new concept of Crypticerya encompasses 22 described species, all of which are found in the New World. Nine species are scattered throughout the deserts of the southwestern United States and Mexico. Here these species are redescribed and one new species, Crypticerya bursera sp.nov. is described from Baja California, Mexico. The adult female and first-instar nymph are illustrated for nine of the 10 species. A key to the adult females of the southwestern species and morphologically similar species of Crypticerya is provided.


Sign in / Sign up

Export Citation Format

Share Document