scholarly journals Performance of Filterbeds and Macrophytes in Vertical Constructed Wetland for Treating Domestic Sewage Effluent

Author(s):  
Vanitha Thammaiah ◽  
Manjunatha Hebbara ◽  
Manjunatha Mudukapla Virupakshappa

Abstract An experiment with different filterbeds and macrophytes was carried-out to study their phytoremediation capacity on the efficiency of domestic wastewater treatment through constructed wetland (CW) during November to March, 2017-18 at University of Agricultural Sciences, Dharwad campus, Karnataka, India. Twenty treatment combinations involving five types of filterbeds (FB-1: gravel, FB-2: gravel-sand-gravel, FB-3: gavel-sand-brick-gravel, FB-4: gravel-sand-charcoal-gravel and FB-5: gravel-sand-(charcoal+brick)-gravel) and four macrophytes (MP-1: Typha latifolia, MP-2: Brachiaria mutica, MP-3: Canna indica and MP-4: Phragmites sps.) were evaluated for treating domestic wastewater. After 120 days from start, across treatment combinations, water electrical conductivity (EC), total dissolved and suspended solids (TDS-TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), sodium, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), bicarbonates, total nitrogen-phosphorus-potassium (N-P-K) and boron (B) were reduced by more than 40 per cent due to wetland treatment. The system enhanced the mineralization of organic nitrogen to ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) fractions. Among filterbeds, Type-5 caused higher reduction in pH, EC, BOD, COD and Organic-N while, Type-4 proved efficient in removing total solids and lowering pH in the sewage effluent. The Type-3 filterbed removed more suspended solids, potassium and ammoniacal nitrogen. Among the macrophytes, Brachiaria (paragrass) removed more nitrogen and potassium while, Phragmites removed more nitrogen, phosphorus and boron. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main, secondary or tertiary treatment stage.

2011 ◽  
Vol 64 (12) ◽  
pp. 2376-2380 ◽  
Author(s):  
Suwasa Kantawanichkul ◽  
Wanida Duangjaisak

The experiments were conducted in four concrete laboratory scale free water surface constructed wetland units 1 m wide, 1.5 m long and 0.8 m deep. Paddy field soil was added to a depth of 0.4 m and rice seedlings (Oryza sativa L.) were transplanted into the units at a density of 25 plants/m2. Domestic wastewater collected from Chiang Mai University was applied into each unit via two different modes to evaluate suitable conditions for wastewater treatment and rice yield. In the first experiment, the wastewater was fed intermittently (7 h/day) with a hydraulic loading rate of 2, 4, 6 and 8 cm/day. The maximum removal efficiencies for chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were only 49.1, 58.7, 64.0 and 59.4%, respectively, due to the short hydraulic retention time for the biodegradation of organic substances. In the second experiment, the wastewater in each unit was inundated to a depth of 15 cm for 10, 15, 20 and 25 days in each unit and then drained and re-flooded. Removal efficiencies of chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were greater than in the first experiment especially at the 25 day retention time and except for suspended solids met the Thai national effluent standard. The study revealed that apart from wastewater treatment, wastewater can replace natural water to grow rice in the dry season or throughout the year. Moreover, nutrients in wastewater can be a substitute for chemical fertilizers. Rice grain production was 4,700 kg/ha and only 6% less than the production from the conventional paddy field.


1995 ◽  
Vol 32 (3) ◽  
pp. 291-294 ◽  
Author(s):  
A. S. Juwarkar ◽  
B. Oke ◽  
A. Juwarkar ◽  
S. M. Patnaik

The paper highlights the use of constructed wetlands for the removal of BOD, nitrogen, phosphorus and pathogens from primary treated wastewater. The constructed wetland consists of emergent macrophytesTypha latifolia and Phragmites carca grown in cement pipes having 0.1256 m2 area and 0.8 meter deep filled with 30% soil and 70% sand. The hydraulic loadings were maintained at the rate of 5 cm per day. The BOD removal in wetlands was observed to be 78-91%. The nitrogen content reduced from 30.8 mgl−1 to 9.5 mgl−1 whereas phosphate in treated wetland effluent was 9.6 mgl−1 as against the mean inflow total phosphate content of 14.9 mgl−1. The country’s first constructed wetland, of 90m × 30m size, was installed at Sainik School, Bhubaneshwar in the State of Orissa. Two types of macrophytes, viz. Typha latifolia and Phragmites carca, were planted. At present 180-200 m3 wastewater is being treated through wetland. BOD and nitrogen removal were 67-90% and 58-63% respectively. The constructed wetland treatment was found to be efficient in removal of BOD and N, and economically viable. The system, being easy to operate and low cost, can provide an economical viable solution for wastewater management.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Reetika Shukla ◽  
Deepak Gupta ◽  
Gurudatta Singh ◽  
Virendra Kumar Mishra

AbstractThe purification of the primary treated domestic sewage was performed in the present study through the horizontal sub-surface flow constructed wetland (CW) of 10 × 3.5 m dimension. The study was performed using three setups of CW 1 (Unplanted CW), CW 2 (CW planted with macrophyte Typha latifolia), and CW 3 (CW planted with two species of macrophyte T. latifolia and Commelina benghalensis). The purification experiments were performed by converting one type of CW into the other form sequentially, i.e., CW 1 was built first and after the experiments, it was converted into CW 2 and then CW 3. The CW was filled with a layer of coarse and fine gravel of 70 cm depth as filter media in 1:2 ratio. Each set of wetland was operated for 3 months (12 wk) during which the treatment performance of wetlands for basic physicochemical parameters was evaluated. The CW was operated in continuous mode at an average hydraulic loading rate of 250 L h− 1 and the treated effluent was analysed twice every week at four different sampling points having hydraulic retention times (HRT) of 12, 24, 36 and 48 h for important sewage quality parameters All the three setups of CW were able to clean the primary treated sewage significantly. Among the three sets of wetlands used, CW 3 was the best performer removing 79, 77, 79, 79, and 78% of biochemical oxygen demand, chemical oxygen demand, nitrate, ammonia, and phosphate respectively in 48 h HRT. Among the three sets of wetlands, the CW 3 removed the highest percent of total coliforms, fecal coliforms, and E. coli as 64, 61 and 52% respectively.


2009 ◽  
Vol 60 (8) ◽  
pp. 2001-2007 ◽  
Author(s):  
P. L. Paulo ◽  
L. Begosso ◽  
N. Pansonato ◽  
Roshan R. Shrestha ◽  
M. A. Boncz

Design and configuration for wetlands treating greywater are usually based on literature data obtained from domestic wastewater operating wetlands. It is very important to determine proper criteria for design and configuration to provide efficiency and minimum maintenance, avoiding bad odour and clogging amongst others, ensuring the acceptance of householders. The aim of this work was to design a wetland system treating greywater for a household and determine whether the chosen criteria were appropriate. Some of the criteria taken into consideration for design and configuration were: quantitative and qualitative characteristics, desired removal of biochemical oxygen demand (BOD) and suspended solids (TSS), substrate and ornamental aspect of the system. The system was composed of a grease trap (kitchen), sedimentation tank, a horizontal flow constructed wetland (HF-CW), intermittent feeding system, and a vertical flow constructed wetland (VF-CW). The results showed that the suggested design and configuration were in accordance with the expected efficiency. Being a compact system, it was susceptible to peak flows, temporarily deteriorating the performance of the HF-CW. The hybrid system, however, showed to cope well with influent fluctuations. The overall performance of the system shows that the removal of turbidity, TSS, COD and BOD were over 88%, reaching 95% removal for both BOD and turbidity.


2021 ◽  
Vol 23 (3) ◽  
pp. 429-433

<p>The research investigated wastewater discharges from wet coffee processing plant (WCPP) combined with tap water (TW) treated by using Cyperus-ustulatus plant (P1), Typha-latifolia plant (P2) wetland. The WCPP wastewater was conducted by different combination (100%WW + 0% TW; 75% WW + 25% TW; 50% WW + 50% TW; 75%WW + 25% TW and 0% WW + 100% TW) after being irrigated for 21 days in the constructed wetland with P1, P2and control (without a plant). The highest value of total solids, chemical oxygen demand and biochemical oxygen demand increases were 76%, 95% and, 96%, respectively, removed wastewater treated by T3 (50% WW + 50% TW) with P2 wetland after 21 days irrigated. As a result, the combination of coffee wastewater with constructed wetland treatment methods was a low-cost, affordable, technically viable and eco-friendly treatment option for the wet coffee processing plant wastewater.</p>


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1445 ◽  
Author(s):  
Michał Marzec ◽  
Krzysztof Jóźwiakowski ◽  
Anna Dębska ◽  
Magdalena Gizińska-Górna ◽  
Aneta Pytka-Woszczyło ◽  
...  

In this paper, the pollutant removal efficiency and the reliability of a vertical and horizontal flow hybrid constructed wetland (CW) planted with common reed, manna grass, and Virginia mallow were analyzed. The wastewater treatment plant, located in south-eastern Poland, treated domestic sewage at an average flow rate of 2.5 m3/d. The tests were carried out during five years of its operation (2014–2018). The following parameters were measured: biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, total nitrogen, and total phosphorus. The results showed that more than 95% of BOD5, COD, and total phosphorus was removed in the tested CW system. The average effectiveness of removal of total suspended solids and total nitrogen exceeded 86%. A reliability analysis performed using the Weibull probability model showed that the removal reliability in the tested CW was very high for BOD5, COD, total suspended solids, and total phosphorus (100%). The probability that the total nitrogen concentration in the treated effluents would reach the limit value (30 mg/L) established for effluents discharged from a treatment plant of less than 2000 PE (population equivalent) to standing waters was 94%. The values of all the pollution indicators in wastewater discharged to the receiver were significantly lower than the limit values required in Poland. The investigated hybrid CW system with common reed, manna grass, and Virginia mallow guaranteed stable low values of BOD5, COD, total suspended solids, and total phosphorus in the treated wastewater, which meant it was highly likely to be positively evaluated in case of an inspection.


Desalination ◽  
2010 ◽  
Vol 250 (3) ◽  
pp. 915-920 ◽  
Author(s):  
Lie-yu Zhang ◽  
Lan Zhang ◽  
Yong-ding Liu ◽  
Yin-wu Shen ◽  
Hao Liu ◽  
...  

2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


2013 ◽  
Vol 68 (7) ◽  
pp. 1461-1467 ◽  
Author(s):  
S. Prigent ◽  
J. Paing ◽  
Y. Andres ◽  
F. Chazarenc

Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite®), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15–38 cm d−1 (i.e. 158–401 g COD (chemical oxygen demand) m−2 d−1) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5–10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe−1 (48 cm d−1, 191 g COD m−2 d−1) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L−1, 125 mg COD L−1, 25 mg BOD5 L−1), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L−1 and 50 mg TN L−1, to be met.


Sign in / Sign up

Export Citation Format

Share Document