scholarly journals Performance comparison of uninsulated and insulated hybrid anaerobic baffled reactor (HABR) operating at warm temperature

2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.

2004 ◽  
Vol 49 (5-6) ◽  
pp. 281-288 ◽  
Author(s):  
S.J. Kim ◽  
P.Y. Yang

A two-stage entrapped mixed microbial cell (2SEMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80 % of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99 %. The effluent TSS of less than 25 mg/L in the 2SEMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6 %) and nitrogen (average 80.5 %) in the 2SEMMC process with 3 times of recirculation ratio.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


2013 ◽  
Vol 67 (12) ◽  
pp. 2739-2745 ◽  
Author(s):  
R. Amaral ◽  
F. Ferreira ◽  
A. Galvão ◽  
J. S. Matos

The use of constructed wetlands as a valuable and attractive method for combined sewer overflow (CSO) treatment has been demonstrated in several studies. In Portugal, a Mediterranean country having usually a long dry period, there are still no applications of this technology. The purpose of this research is to gather information and know-how required for the design and management of this type of infrastructure. A pilot-scale experimental setup for CSO treatment was installed and evaluated in situ, in terms of organic matter, total suspended solids and microorganism removal with emphasis on the results of the start-up. After 1 day of retention average removal efficiencies of 73–79% and 82–89% were obtained in terms of chemical oxygen demand (COD) and total suspended solids (TSS), respectively. During the remaining retention time a slower removal was observed. After 7 days, the COD removal efficiencies reached 86–91% and the TSS removal efficiencies reached 93–97%. On average, after 1 day, reductions of 1.2–2.0 log and 1.9–2.4 log, respectively, for total coliforms and Enterococcus were observed. For a retention time of 7 days these reductions attained 4.0–4.9 log and 4.4–5.3 log, respectively.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Khaled Abd el naser I. Ibrahim ◽  
Tarek Ismail M. Sabry ◽  
Ahmed S. El-Gendy ◽  
Sayed I. A. Ahmed

AbstractIn an attempt to improve the quality of the agricultural drain in Egypt for its reuse again in the irrigation, low-cost solution such as sand filter along with/without other filtration media has been used in this research. As a result of that, pilot plant of sand filter mixed with other filtration media was tested for its ability to improve the sand performance in removing the suspended solids and organic matters from agricultural drain water of the Belbeis drain (in Sharkia governorate in Egypt). Sand only, sand mixed with sponge, sand mixed with activated carbon and sand mixed with ceramic cylinders have been tested to find the best media combination and optimum mixing sand/ medium ratio and optimum infiltration rate. The work has been done on four runs. It was found that sand mixed with ceramic cylinders gave the best removal efficiency with respect to total chemical oxygen demand and chemical oxygen demand for solution which were 77, 74%, respectively, whereas sand mixed with sponge had the best removal efficiency with respect to total suspended solids which was 89%. Also, all tested media combination had effluent quality that complied with Egyptian law 48 for the year 1982 regarding the disposal of wastewater into agricultural drains (chemical oxygen demand ≤ 80 mg/l, total suspended solids ≤ 50 mg/l).


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Teck-Yee Ling ◽  
Chen-Lin Soo ◽  
Jing-Jing Liew ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA) and principal component analysis (PCA). Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.


2020 ◽  
Author(s):  
Nandini Moondra ◽  
Namrata Jariwala ◽  
Robin A Christian

Abstract Tertiary treatment using chemicals frequently prompts secondary contamination of sludge, making additional issues of safe disposal. Thus, vitality and cost required for tertiary treatment of wastewater stay an issue for industries and municipalities. In this study, different microalgal concentrations 360 mL (20%), 450 mL (25%), 540 mL (30%), 630 mL (35%), 720 mL (40%) and 810 mL (45%) were studied to treat domestic wastewater for 11 hours of detention time for both filtered and non-filtered effluent. During the study, removal was observed in Total Solids (TS), Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Electrical Conductivity (EC), phosphate, ammonia and Chemical Oxygen Demand (COD) for all the microalgal concentrations mentioned. 30% microalgal concentration showed maximum removal efficiency among different microalgal concentrations studied. Maximum removal efficiency found in non-filtered effluents when treated with 30% microalgal concentration was 96.60, 91.73 and 84.71% respectively for ammonia, phosphate and COD concentration. However, the removal efficiency increased to 97.62, 92.47 and 88.75% respectively for ammonia, phosphate and COD in the case of filtered effluents. In the case of TSS and EC, removal efficiency reached up to 30.87 and 24.31% respectively for non-filtered effluents while it was 48.00 and 25.88% respectively, for the filtered effluents. One-way ANOVA was also conducted to determine the statistical significance of the study. The study showed that an algae-based system could accomplish a more affordable and environment-friendly way to treat domestic wastewater without tertiary treatment to a desirable limit.


2014 ◽  
Vol 70 (12) ◽  
pp. 1941-1947 ◽  
Author(s):  
R. Campos ◽  
F. M. Ferraz ◽  
E. M. Vieira ◽  
J. Povinelli

This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.


2011 ◽  
Vol 64 (12) ◽  
pp. 2376-2380 ◽  
Author(s):  
Suwasa Kantawanichkul ◽  
Wanida Duangjaisak

The experiments were conducted in four concrete laboratory scale free water surface constructed wetland units 1 m wide, 1.5 m long and 0.8 m deep. Paddy field soil was added to a depth of 0.4 m and rice seedlings (Oryza sativa L.) were transplanted into the units at a density of 25 plants/m2. Domestic wastewater collected from Chiang Mai University was applied into each unit via two different modes to evaluate suitable conditions for wastewater treatment and rice yield. In the first experiment, the wastewater was fed intermittently (7 h/day) with a hydraulic loading rate of 2, 4, 6 and 8 cm/day. The maximum removal efficiencies for chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were only 49.1, 58.7, 64.0 and 59.4%, respectively, due to the short hydraulic retention time for the biodegradation of organic substances. In the second experiment, the wastewater in each unit was inundated to a depth of 15 cm for 10, 15, 20 and 25 days in each unit and then drained and re-flooded. Removal efficiencies of chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were greater than in the first experiment especially at the 25 day retention time and except for suspended solids met the Thai national effluent standard. The study revealed that apart from wastewater treatment, wastewater can replace natural water to grow rice in the dry season or throughout the year. Moreover, nutrients in wastewater can be a substitute for chemical fertilizers. Rice grain production was 4,700 kg/ha and only 6% less than the production from the conventional paddy field.


2020 ◽  
Author(s):  
Nandini Moondra ◽  
Namrata Jariwala ◽  
Robin A Christian

Abstract Tertiary treatment using chemicals frequently prompts secondary contamination of sludge, making other issues of safe disposal. Thus, vitality and cost required for tertiary treatment of wastewater stay an issue for industries and municipalities. In this study, different microalgal concentrations (20%, 25%, 30%, 35%, 40% and 45%) were studied to treat domestic wastewater at 11 hours HRT for both filtered and non- filtered effluent. During the study, removal was observed in Total Solids (TS), Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Electrical Conductivity (EC), phosphate, ammonia and COD for all the microalgal concentrations mentioned. However, the maximum removal efficiency was observed at 30% microalgal concentration. Maximum removal efficiency found in ammonia, phosphate and COD for non-filtered effluent was 96.60%, 91.73% and 84.71% respectively, whereas, in the case of the filtered sample, removal efficiency reached up to 97.62%, 92.47% and 88.75% for ammonia, phosphate and COD respectively. In the case of solids (specifically TSS) and EC, removal efficiency reached up to 30.87% and 24.31% respectively for non-filtered effluent and was 48.00% and 25.88% in the filtered sample. The study showed that an algae-based system could accomplish more affordable and environment-friendly way to treat domestic wastewater without tertiary treatment to a desirable limit.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 256
Author(s):  
Kulyash Meiramkulova ◽  
Davud Devrishov ◽  
Mikhail Zhumagulov ◽  
Sholpan Arystanova ◽  
Zhaskhaiyr Karagoishin ◽  
...  

Industrial activities produce a variety of pollutants that may not be easily treated using centralized wastewater treatment systems based on a single treatment unit. The variability of the pollutants brings the importance of industrial-specific integrated wastewater treatment plants such as integrated membrane filtration systems. However, the performance of a membrane filtration process can be highly affected by the presence of high amounts of suspended particles in the raw wastewater. Therefore, proper selection of a pre-treatment unit prior to a membrane filtration wastewater treatment system is a key aspect of its performance. This study investigated the performance of an integrated membrane filtration treatment system connected to an electrochemical process (pre-treatment) on the purification of a poultry slaughterhouse wastewater toward achieving a high-quality effluent. The industrial-scale treatment plant installed at the Izhevsk Production Corporative (PC) poultry farm in Kazakhstan is composed of an electrochemical, ultrafiltration (UF), and reverse osmosis (RO) as the main treatment units. From the analysis results, the electrochemical pre-treatment unit was observed to be highly effective for the removal of some physicochemical parameters such as turbidity, color, total suspended solids, total iron, aluminum, chemical oxygen demand, and biochemical oxygen demand; with removal efficiency ranging from 71 to 85%. The low removal efficiency of the pre-treatment system was also observed from free and total chlorine, nitrites, nitrates, phosphates, and ammonium nitrogen; with removal efficiency ranging from 4 to 45%. While in general, the overall treatment train was observed to be highly efficient for some physicochemical parameters such as turbidity, color, total suspended solids, as well as chemical and biochemical oxygen demand; maintaining almost 100% removal efficiency throughout the study period. Also, the high removal efficiency of the electrochemical pre-treatment processes led to a relatively low rate of cake formation on the membrane filters.


Sign in / Sign up

Export Citation Format

Share Document