scholarly journals Effect of Multi-Axial Stress State on the Deformation Path in Tube Flaring Process By Necking Instability Criteria

Author(s):  
Bruno Buchmayr ◽  
Alireza Omidvar

Abstract Various parts for automotive, appliance and oil industry are pro- duced from tubes that are assembled and welded. For gaining the best weight savings, durability and cost reasons (energy saving, production cost, etc) the formability of the tubular materials is very important. The overall success of deformation process heavily depends on the incoming tubular material proper- ties. In this work, formability of tubular steels is experimentally characterized and with the development of a numerical model the effect of biaxial stress state has been investigated. An experimental method has been developed to characterize the importance of multi-axial stress state on the formability of tubes. This requires the deformation in form of flaring of the tubular samples through a conical die. Damage strains are determined with the help of Hill-Swift Sheet Metal Forming Criteria and a plot of main strains occurring during the tube flaring test, after variation of the die-angle and friction coefficient has been resulted. Experimental results were then entered into the damage models of finite element program DEFORMTM-PC PRO and used to calibrate the damage model for formability so that a sizable variation of range of multiaxial state of stress could be produced. The results showed that with increasing the stress multiaxiality of tubular steels, the damage strain was reduced. This indicates that the proposed method could be used of benefit in quality control in the production of tubes specially in the monitoring and controlling of tubes production such as tube rolling, welding and annealing.

2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2013 ◽  
Vol 768-769 ◽  
pp. 564-571 ◽  
Author(s):  
Kenji Suzuki ◽  
Takahisa Shobu ◽  
Ayumi Shiro

The specimen material was austenitic stainless steel, SUS316L. The residual stress was induced by water-jet peening. The residual stress was measured using the 311 diffraction with conventional X-rays. The measured residual stress showed the equi-biaxial stress state. To investigate thermal stability of the residual stress, the specimen was aged thermally at 773 K in air to 1000 h. The residual stress kept the equi-biaxial stress state against the thermal aging. Lattice plane dependency of the residual stress induced by water-jet peening was evaluated using hard synchrotron X-rays. The residual stress measured by the soft lattice plane showed the equi-biaxial stress state, but the residual stress measured by the hard lattice plane did not. In addition, the distributions of the residual stress in the depth direction were measured using a strain scanning method with hard synchrotron X-rays and neutrons.


1997 ◽  
Vol 39 (7) ◽  
pp. 781-793 ◽  
Author(s):  
Seung Chul Baik ◽  
Heung Nam Han ◽  
Sang Heon Lee ◽  
Kyu Hwan Oh ◽  
Dong Nyung Lee

2014 ◽  
Vol 306 ◽  
pp. 70-74 ◽  
Author(s):  
D. Faurie ◽  
P.-O. Renault ◽  
E. Le Bourhis ◽  
G. Geandier ◽  
P. Goudeau ◽  
...  

Author(s):  
Leonardo Borgianni ◽  
Paola Forte ◽  
Luigi Marchi

Gears can show significant biaxial stress state at tooth root fillet, due to the way they are loaded and their particular geometry. This biaxial stress state can show a significant variability in principal axes during meshing. Moreover loads may have non predictable components that can be evaluated with the aid of recorded data from complex spectra. In these conditions, commonly adopted approaches for fatigue evaluation may be unsuitable for a reliable fatigue life prediction. This work is aimed at discussing a computer implementation of a fatigue life prediction method suitable for multiaxial stress states and constant amplitude or random loading. For random loading a counting procedure to extract cycles from complex load histories is discussed. This method, proposed by Vidal et al., is based on the r.m.s. value of a damage indicator over all the planes through the point where the fatigue life calculation is made. Miner’s rule is used for the evaluation of the overall damage. The whole fatigue life of the component is evaluated in terms of the numbers of repetitions of the loading block. FEM data are used to evaluate stresses under load. The implementation was validated using test data found in the technical literature. Examples of applications to gears are finally discussed.


Sign in / Sign up

Export Citation Format

Share Document