scholarly journals Artificial intelligence-based patient positioning for faster, more accurate and efficient CT imaging for COVID-19 patients

2020 ◽  
Author(s):  
Yadong Gang ◽  
Xiongfeng Chen ◽  
Huan Li ◽  
Hanlun Wang ◽  
Jianying Li ◽  
...  

Abstract Objective: To analyze and compare the imaging workflow, radiation dose and image quality for COVID-19 patients examined using either the conventional manual positioning method or an AI-based positioning method. Materials and Methods: 127 adult COVID-19 patients underwent chest CT scans on a CT scanner using the same scan protocol except with the manual positioning (MP group) for the initial scan and an AI-based positioning method (AP group) for the follow-up scan. Radiation dose, patient off-center distance, examination and positioning time of the two groups were recorded and compared. Image noise and signal-to-noise ratio (SNR) were assessed by three experienced radiologists and were compared between the two groups.Results: The AP group reduced the total positioning time and examination time by 28% and 8%, respectively compared with the MP group. Compared with the MP group, AP group had significantly less patient off-center distance (AP:1.56cm ± 0.83 vs. MP: 4.05cm ± 2.40, p<0.001) and higher proportion of positioning accuracy (AP: 99% vs. MP: 92%), resulted in 16% radiation dose reduction (AP: 6.1mSv ± 1.3 vs. MP: 7.3mSv ± 1.2, p<0.001) and 9% image noise reduction in erector spinae and lower noise and higher SNR for lesions in the pulmonary peripheral areas.Conclusion: The AI-based positioning and centering in CT imaging is a promising new technique for reducing radiation dose, optimizing imaging workflow and image quality in imaging the chest. This technique has important added clinical value in imaging COVID-19 patients to reduce the cross-infection risks.

2020 ◽  
Author(s):  
Yadong Gang ◽  
Xiongfeng Chen ◽  
Huan Li ◽  
Hanlun Wang ◽  
Jianying Li ◽  
...  

Abstract Objective: To analyze and compare the imaging workflow, radiation dose and image quality for COVID-19 patients examined using either the conventional manual positioning (MP) method or an AI-based automatic positioning (AP) method. Materials and Methods: 127 adult COVID-19 patients underwent chest CT scans on a CT scanner using the same scan protocol except with the manual positioning (MP group) for the initial scan and an AI-based automatic positioning method (AP group) for the follow-up scan. Radiation dose, patient positioning time and off-center distance, of the two groups were recorded and compared. Image noise and signal-to-noise ratio (SNR) were assessed by three experienced radiologists and were compared between the two groups.Results: The AP operation was successful for all patients in the AP group and reduced the total positioning time by 28% compared with the MP group. Compared with the MP group, the AP group had significantly less patient off-center distance (AP:1.56cm±0.83 vs. MP: 4.05cm±2.40, p<0.001) and higher proportion of positioning accuracy (AP: 99% vs. MP: 92%), resulted in 16% radiation dose reduction (AP: 6.1mSv±1.3 vs. MP: 7.3mSv±1.2, p<0.001) and 9% image noise reduction in erector spinae and lower noise and higher SNR for lesions in the pulmonary peripheral areas.Conclusion: The AI-based automatic positioning and centering in CT imaging is a promising new technique for reducing radiation dose, optimizing imaging workflow and image quality in imaging the chest. This technique has important added clinical value in imaging COVID-19 patients to reduce the cross-infection risks.


Author(s):  
Yadong Gang ◽  
Xiongfeng Chen ◽  
Huan Li ◽  
Hanlun Wang ◽  
Jianying Li ◽  
...  

Abstract Objective To analyze and compare the imaging workflow, radiation dose, and image quality for COVID-19 patients examined using either the conventional manual positioning (MP) method or an AI-based automatic positioning (AP) method. Materials and methods One hundred twenty-seven adult COVID-19 patients underwent chest CT scans on a CT scanner using the same scan protocol except with the manual positioning (MP group) for the initial scan and an AI-based automatic positioning method (AP group) for the follow-up scan. Radiation dose, patient positioning time, and off-center distance of the two groups were recorded and compared. Image noise and signal-to-noise ratio (SNR) were assessed by three experienced radiologists and were compared between the two groups. Results The AP operation was successful for all patients in the AP group and reduced the total positioning time by 28% compared with the MP group. Compared with the MP group, the AP group had significantly less patient off-center distance (AP 1.56 cm ± 0.83 vs. MP 4.05 cm ± 2.40, p < 0.001) and higher proportion of positioning accuracy (AP 99% vs. MP 92%), resulting in 16% radiation dose reduction (AP 6.1 mSv ± 1.3 vs. MP 7.3 mSv ± 1.2, p < 0.001) and 9% image noise reduction in erector spinae and lower noise and higher SNR for lesions in the pulmonary peripheral areas. Conclusion The AI-based automatic positioning and centering in CT imaging is a promising new technique for reducing radiation dose and optimizing imaging workflow and image quality in imaging the chest. Key Points • The AI-based automatic positioning (AP) operation was successful for all patients in our study. • AP method reduced the total positioning time by 28% compared with the manual positioning (MP). • AP method had less patient off-center distance and higher proportion of positioning accuracy than MP method, resulting in 16% radiation dose reduction and 9% image noise reduction in erector spinae.


2014 ◽  
Vol 53 (03) ◽  
pp. 79-87 ◽  
Author(s):  
M. Souvatzoglou ◽  
A. Martinez-Möller ◽  
M. Schwaiger ◽  
S. I. Ziegler ◽  
S. Fürst ◽  
...  

SummaryThe surface coils of the Biograph mMR integrated PET/MR system were optimised for PET, but are otherwise unaccounted for. The patient table is still more massive than those of PET/CT devices. The goal was to assess those hardware effects on quantification, count statistics, image quality and scan time both with phantoms and in patients and to investigate their clinical relevance. Patients, material, methods: PET phantom data were acquired with and without the patient table. Image noise was expressed as relative standard deviation and compared to a state-of-the-art PET/CT scanner. Protocols of the phantom/patient study regarding the surface coils were similar. Thoraces/ab- domens of 11 patients were scanned with and without a coil (1 BP, 4 min). Mean uptake and standard deviation in a cubical VOI were derived and expressed as SUV. Results: The patient table reduced the number of true coincidences (trues) by 19% (PET/MR) and by 11% (PET/CT). The scan duration for the mMR had to be increased by approximately 30% to achieve a noise level comparable to that of the PET/CT. Decreased SUVs with coil observed in the phantom were confirmed by the patient study. By removing the coil, the mean liver SUV increased by (6 ± 2)%. With (+3 ± 14)%, the average change was similar in lesions, but exceeded 20% in almost one fifth of them. The number of trues grew by (6 ± 1)% for the patients and by 7% for the phantom. Conclusion: Due to the additional attenuation caused by MR hardware, PET scan durations would have to be increased compared to current PET/CTs to provide similar image noise levels. The effect of the coils is mostly in the order of statistical fluctuations. In tumour lesions, it is more pronounced and shows a larger variability. Therefore, coils should be included in the attenuation correction to ensure accurate quantification and thus comparability across PET/MR and PET/CT scanners and within patient populations.


2017 ◽  
Vol 59 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Yun Hye Ju ◽  
Geewon Lee ◽  
Ji Won Lee ◽  
Seung Baek Hong ◽  
Young Ju Suh ◽  
...  

Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal–Wallis test and the Chi-square test. Results Effective doses were 61–87% lower in groups 2–5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1–3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1–4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.


Author(s):  
Ibrahim Yel ◽  
Simon Martin ◽  
Julian Wichmann ◽  
Lukas Lenga ◽  
Moritz Albrecht ◽  
...  

Purpose The aim of the study was to evaluate high-pitch 70-kV CT examinations of the thorax in immunosuppressed patients regarding radiation dose and image quality in comparison with 120-kV acquisition. Materials and Methods The image data from 40 patients (14 women and 26 men; mean age: 40.9 ± 15.4 years) who received high-pitch 70-kV CT chest examinations were retrospectively included in this study. A control group (n = 40), matched by age, gender, BMI, and clinical inclusion criteria, had undergone standard 120-kV chest CT imaging. All CT scans were performed on a third-generation dual-source CT unit. For an evaluation of the radiation dose, the CT dose index (CTDIvol), dose-length product (DLP), effective dose (ED), and size-specific dose estimates (SSDE) were analyzed in each group. The objective image quality was evaluated using signal-to-noise (SNR) and contrast-to-noise ratios (CNR). Three blinded and independent radiologists evaluated subjective image quality and diagnostic confidence using 5-point Likert scales. Results The mean dose parameters were significantly lower for high-pitch 70-kV CT examinations (CTDIvol, 2.9 ± 0.9 mGy; DLP, 99.9 ± 31.0 mGyxcm; ED, 1.5 ± 0.6 mSv; SSDE, 3.8 ± 1.2 mGy) compared to standard 120-kV CT imaging (CTDIvol, 8.8 ± 3.7mGy; DLP, 296.6 ± 119.3 mGyxcm; ED, 4.4 ± 2.1 mSv; SSDE, 11.6 ± 4.4 mGy) (P≤ 0.001). The objective image parameters (SNR: 7.8 ± 2.1 vs. 8.4 ± 1.8; CNR: 7.7 ± 2.4 vs. 8.3 ± 2.8) (P≥ 0.065) and the cumulative subjective image quality (4.5 ± 0.4 vs. 4.7 ± 0.3) (p = 0.052) showed no significant differences between the two protocols. Conclusion High-pitch 70-kV thoracic CT examinations in immunosuppressed patients resulted in a significantly reduced radiation exposure compared to standard 120-kV CT acquisition without a decrease in image quality. Key Points:  Citation Format


2017 ◽  
Vol 59 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Ahmed E Othman ◽  
Malte Niklas Bongers ◽  
Dominik Zinsser ◽  
Christoph Schabel ◽  
Julian L Wichmann ◽  
...  

Background Patients with acute non-traumatic abdominal pain often undergo abdominal computed tomography (CT). However, abdominal CT is associated with high radiation exposure. Purpose To evaluate diagnostic performance of a reduced-dose 100 kVp CT protocol with advanced modeled iterative reconstruction as compared to a linearly blended 120 kVp protocol for assessment of acute, non-traumatic abdominal pain. Material and Methods Two radiologists assessed 100 kVp and linearly blended 120 kVp series of 112 consecutive patients with acute non-traumatic pain (onset < 48 h) regarding image quality, noise, and artifacts on a five-point Likert scale. Both radiologists assessed both series for abdominal pathologies and for diagnostic confidence. Both 100 kVp and linearly blended 120 kVp series were quantitatively evaluated regarding radiation dose and image noise. Comparative statistics and diagnostic accuracy was calculated using receiver operating curve (ROC) statistics, with final clinical diagnosis/clinical follow-up as reference standard. Results Image quality was high for both series without detectable significant differences ( P = 0.157). Image noise and artifacts were rated low for both series but significantly higher for 100 kVp ( P ≤ 0.021). Diagnostic accuracy was high for both series (120 kVp: area under the curve [AUC] = 0.950, sensitivity = 0.958, specificity = 0.941; 100 kVp: AUC ≥ 0.910, sensitivity ≥ 0.937, specificity = 0.882; P ≥ 0.516) with almost perfect inter-rater agreement (Kappa = 0.939). Diagnostic confidence was high for both dose levels without significant differences (100 kVp 5, range 4–5; 120 kVp 5, range 3–5; P = 0.134). The 100 kVp series yielded 26.1% lower radiation dose compared with the 120 kVp series (5.72 ± 2.23 mSv versus 7.75 ± 3.02 mSv, P < 0.001). Image noise was significantly higher in reduced-dose CT (13.3 ± 2.4 HU versus 10.6 ± 2.1 HU; P < 0.001). Conclusion Reduced-dose abdominal CT using 100 kVp yields excellent image quality and high diagnostic accuracy for the assessment of acute non-traumatic abdominal pain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259772
Author(s):  
Li-Guo Chen ◽  
Ping-An Wu ◽  
Hsing-Yang Tu ◽  
Ming-Huei Sheu ◽  
Li-Chuan Huang

Exposure to ionizing radiation can cause cancer, especially in children. In computed tomography (CT), a trade-off exists between the radiation dose and image quality. Few studies have investigated the effect of dose reduction on image quality in pediatric neck CT. We aimed to assess the effect of peak kilovoltage on the radiation dose and image quality in pediatric neck multidetector-row CT. Measurements were made using three phantoms representative of children aged 1, 5, and 10 years, with tube voltages of 80, 100, and 120 kilovoltage peak (kVp); tube current of 10, 40, 80, 120, 150, 200, and 250 mA; and exposure time = 0.5 s (pitch, 0.984:1). Radiation dose estimates were derived from the dose-length product with a 64-multidetector-row CT scanner. Images obtained from the control protocol (120 kVp) were compared with the 80- and 100-kVp protocols. The effective dose (ED) was determined for each protocol and compared with the 120-kVp protocol. Quantitative analysis entailed noise measurements by recording the standard deviation of attenuation for a circular 1-cm2 region of interest placed on homogeneous soft tissue structures in the phantom. The mean noise of the various kVp protocols was compared using the unpaired Student t-test. Reduction of ED was 37.58% and 68.58% for neck CT with 100 kVp and 80 kVp, respectively. The image noise level increased with the decrease in peak kilovoltage. Noise values were higher at 80 kVp at all neck levels, but did not increase at 100 kVp, compared to 120 kVp in the three phantoms. The measured noise difference was the greatest at 80 kVp (absolute increases<2.5 HU). The subjective image quality did not differ among the protocols. Thus, reducing voltage from 120 to 80 kVp for neck CT may achieve ED reduction of 68.58%, without compromising image quality.


Author(s):  
A. Mokhtar ◽  
Z. A. Aabdelbary ◽  
A. Sarhan ◽  
H. M. Gad ◽  
M. T. Ahmed

Abstract Background To study radiation dose, image quality and low-contrast cylinder detectability from multislice CT (MSCT) abdomen by using low tube voltage using the American College of Radiology (ACR) phantom. The ACR phantom (low-contrast module) was scanned with 64 MSCT scanner (Brilliance, Philips Medical System, Eindhoven, Netherlands) with 80 and 120 KVP, utilizing different tube current time product (mAs) range from 50 to 380 mAs. The image noise (SD), signal to noise ratio, contrast-to-noise ratio (CNR), and scores of low contrast detectability were assessed for every image respectively. Results From images analyses, the noise essentially increased with the use of low tube voltage. The CNR was 0.94 ± 0.27 at 120 KVP, and CNR was 0.43 ± 0.22 at 80 KVP. However, with the same dose, there were no differences of statistical significance in scores of low-contrast detectability between 120 KVP at 300mAs and 80 KVP at (200–380) mAs (p > 0.05). At 300 mAs, the CTDIvol obtained at 80 KVP was about 29% of that at 120 KVP. The CTDIvol obtained at 80 KVP were decreased from 5% at 50 mAs, to 37% at 380 mAs. Conclusions There is a possibility to decrease exposure of radiation virtually by reducing KVP from 120 to 80 KVP in examination of abdominal CT when the high tube current is used, though increasing image noise at low tube voltage.


2020 ◽  
Author(s):  
Jan-Peter Grunz ◽  
Carsten Herbert Gietzen ◽  
Andreas Steven Kunz ◽  
Maike Veyhl-Wichmann ◽  
Süleyman Ergün ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document