scholarly journals Evaluation of Radiation Dose and Image Quality using High-Pitch 70-kV Chest CT in Immunosuppressed Patients

Author(s):  
Ibrahim Yel ◽  
Simon Martin ◽  
Julian Wichmann ◽  
Lukas Lenga ◽  
Moritz Albrecht ◽  
...  

Purpose The aim of the study was to evaluate high-pitch 70-kV CT examinations of the thorax in immunosuppressed patients regarding radiation dose and image quality in comparison with 120-kV acquisition. Materials and Methods The image data from 40 patients (14 women and 26 men; mean age: 40.9 ± 15.4 years) who received high-pitch 70-kV CT chest examinations were retrospectively included in this study. A control group (n = 40), matched by age, gender, BMI, and clinical inclusion criteria, had undergone standard 120-kV chest CT imaging. All CT scans were performed on a third-generation dual-source CT unit. For an evaluation of the radiation dose, the CT dose index (CTDIvol), dose-length product (DLP), effective dose (ED), and size-specific dose estimates (SSDE) were analyzed in each group. The objective image quality was evaluated using signal-to-noise (SNR) and contrast-to-noise ratios (CNR). Three blinded and independent radiologists evaluated subjective image quality and diagnostic confidence using 5-point Likert scales. Results The mean dose parameters were significantly lower for high-pitch 70-kV CT examinations (CTDIvol, 2.9 ± 0.9 mGy; DLP, 99.9 ± 31.0 mGyxcm; ED, 1.5 ± 0.6 mSv; SSDE, 3.8 ± 1.2 mGy) compared to standard 120-kV CT imaging (CTDIvol, 8.8 ± 3.7mGy; DLP, 296.6 ± 119.3 mGyxcm; ED, 4.4 ± 2.1 mSv; SSDE, 11.6 ± 4.4 mGy) (P≤ 0.001). The objective image parameters (SNR: 7.8 ± 2.1 vs. 8.4 ± 1.8; CNR: 7.7 ± 2.4 vs. 8.3 ± 2.8) (P≥ 0.065) and the cumulative subjective image quality (4.5 ± 0.4 vs. 4.7 ± 0.3) (p = 0.052) showed no significant differences between the two protocols. Conclusion High-pitch 70-kV thoracic CT examinations in immunosuppressed patients resulted in a significantly reduced radiation exposure compared to standard 120-kV CT acquisition without a decrease in image quality. Key Points:  Citation Format

Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Robert Forbrig ◽  
Michael Ingrisch ◽  
Robert Stahl ◽  
Katharina Stella Winter ◽  
Maximilian Reiser ◽  
...  

Abstract In this third-generation dual-source CT (DSCT) study, we retrospectively investigated radiation dose and image quality of portal-venous high-pitch emergency CT in 60 patients (28 female, mean age 56 years) with a body mass index (BMI) ≥ 30 kg/m2. Patients were dichotomized in groups A (median BMI 31.5 kg/m2; n = 33) and B (36.8 kg/m2; n = 27). Volumetric CT dose index (CTDIvol), size-specific dose estimate (SSDE), dose length product (DLP) and effective dose (ED) were assessed. Contrast-to-noise ratio (CNR) and dose-independent figure-of-merit (FOM) CNR were calculated. Subjective image quality was assessed using a five-point scale. Mean values of CTDIvol, SSDE as well as normalized DLP and ED were 7.6 ± 1.8 mGy, 8.0 ± 1.8 mGy, 304 ± 74 mGy * cm and 5.2 ± 1.3 mSv for group A, and 12.6 ± 3.7 mGy, 11.0 ± 2.6 mGy, 521 ± 157 mGy * cm and 8.9 ± 2.7 mSv for group B (p < 0.001). CNR of the liver and spleen as well as each calculated FOM CNR were significantly higher in group A (p < 0.001). Subjective image quality was good in both groups. In conclusion, third-generation abdominal high-pitch emergency DSCT yields good image quality in obese patients. Radiation dose increases in patients with a BMI > 36.8 kg/m2.


2015 ◽  
Vol 26 (4) ◽  
pp. 1149-1158 ◽  
Author(s):  
Seong Ho Kim ◽  
Young Hun Choi ◽  
Hyun-Hae Cho ◽  
So Mi Lee ◽  
Su-Mi Shin ◽  
...  

2016 ◽  
Vol 6 ◽  
pp. 44 ◽  
Author(s):  
Philip V M Linsen ◽  
Adriaan Coenen ◽  
Marisa M Lubbers ◽  
Marcel L Dijkshoorn ◽  
Mohamed Ouhlous ◽  
...  

Purpose: This study aims to compare image quality, radiation dose, and the influence of the heart rate on image quality of high-pitch spiral coronary computed tomography angiography (CCTA) using 128-slice (second generation) dual-source CT (DSCT) and a 192-slice DSCT (third generation) scanner. Materials and Methods: Two consecutive cohorts of fifty patients underwent CCTA by high-pitch spiral scan mode using 128 or 192-slice DSCT. The 192-slice DSCT system has a more powerful roentgen tube (2 × 120 kW) that allows CCTA acquisition at lower tube voltages, wider longitudinal coverage for faster table speed (732 m/s), and the use of iterative reconstruction. Objective image quality was measured as the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was evaluated using a Likert scale. Results: While the effective dose was lower with 192-slice DSCT (1.2 ± 0.5 vs. 0.6 ± 0.3 mSv; P < 0.001), the SNR (18.9 ± 4.3 vs. 11.0 ± 2.9; P < 0.001) and CNR (23.5 ± 4.8 vs. 14.3 ± 4.1; P < 0.001) were superior to 128-slice DSCT. Although patients scanned with 192-slice DSCT had a faster heart rate (59 ± 7 vs. 56 ± 6; P = 0.045), subjective image quality was scored higher (4.2 ± 0.8 vs. 3.0 ± 0.7; P < 0.001) compared to 128-slice DSCT. Conclusions: High-pitch spiral CCTA by 192-slice DSCT provides better image quality, despite a higher average heart rate, at lower radiation doses compared to 128-slice DSCT.


2010 ◽  
Vol 51 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Peter Björkdahl ◽  
Ulf Nyman

Background: Concern has been raised regarding the mounting collective radiation doses from computed tomography (CT), increasing the risk of radiation-induced cancers in exposed populations. Purpose: To compare radiation dose and image quality in a chest phantom and in patients for the diagnosis of pulmonary embolism (PE) at 100 and 120 peak kilovoltage (kVp) using 16-multichannel detector computed tomography (MDCT). Material and Methods: A 20-ml syringe containing 12 mg I/ml was scanned in a chest phantom at 100/120 kVp and 25 milliampere seconds (mAs). Consecutive patients underwent 100 kVp ( n = 50) and 120 kVp ( n = 50) 16-MDCT using a “quality reference” effective mAs of 100, 300 mg I/kg, and a 12-s injection duration. Attenuation (CT number), image noise (1 standard deviation), and contrast-to-noise ratio (CNR; fresh clot = 70 HU) of the contrast medium syringe and pulmonary arteries were evaluated on 3-mm-thick slices. Subjective image quality was assessed. Computed tomography dose index (CTDIvol) and dose–length product (DLP) were presented by the CT software, and effective dose was estimated. Results: Mean values in the chest phantom and patients changed as follows when X-ray tube potential decreased from 120 to 100 kVp: attenuation +23% and +40%, noise +38% and +48%, CNR −6% and 0%, and CTDIvol −38% and −40%, respectively. Mean DLP and effective dose in the patients decreased by 42% and 45%, respectively. Subjective image quality was excellent or adequate in 49/48 patients at 100/120 kVp. No patient with a negative CT had any thromboembolism diagnosed during 3-month follow-up. Conclusion: By reducing X-ray tube potential from 120 to 100 kVp, while keeping all other scanning parameters unchanged, the radiation dose to the patient may be almost halved without deterioration of diagnostic quality, which may be of particular benefit in young individuals.


2017 ◽  
Vol 45 (6) ◽  
pp. 2101-2109 ◽  
Author(s):  
Barbara K Frisch ◽  
Karin Slebocki ◽  
Kamal Mammadov ◽  
Michael Puesken ◽  
Ingrid Becker ◽  
...  

Objective To evaluate the use of ultra-low-dose computed tomography (ULDCT) for CT-guided lung biopsy versus standard-dose CT (SDCT). Methods CT-guided lung biopsies from 115 patients (50 ULDCT, 65 SDCT) were analyzed retrospectively. SDCT settings were 120 kVp with automatic mAs modulation. ULDCT settings were 80 kVp with fixed exposure (20 mAs). Two radiologists evaluated image quality (i.e., needle artifacts, lesion contouring, vessel recognition, visibility of interlobar fissures). Complications and histological results were also evaluated. Results ULDCT was considered feasible for all lung interventions, showing the same diagnostic accuracy as SDCT. Its mean total radiation dose (dose–length product) was significantly reduced to 34 mGy-cm (SDCT 426 mGy-cm). Image quality and complication rates ( P = 0.469) were consistent. Conclusions ULDCT for CT-guided lung biopsies appears safe and accurate, with a significantly reduced radiation dose. We therefore recommend routine clinical use of ULDCT for the benefit of patients and interventionalists.


2014 ◽  
Vol 4 ◽  
pp. 38 ◽  
Author(s):  
Lukas Ebner ◽  
Felix Knobloch ◽  
Adrian Huber ◽  
Julia Landau ◽  
Daniel Ott ◽  
...  

Objective: The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.


Sign in / Sign up

Export Citation Format

Share Document