scholarly journals Synergic Interaction Between Permethrin and Bt Toxins Discovered Using RNA-Seq

Author(s):  
Takuma Sakamoto ◽  
Toshinori Kozaki ◽  
Norichika Ogata

Abstract BACKGROUND: Acting against the development of resistance to antibiotics and insecticides, involving negatively correlated cross-resistance (NCR) is an alternative to use- and-discard approach. It is termed NCR that toxic chemicals interact with each other and resistance of target organisms to one chemical is sometimes associated with increased susceptibility to a second chemical when; an allele confers resistance to one toxic chemical and hyper-susceptibility to another, NCR occurs. However, only 11 toxin pairs have been revealed to cause NCR in insects. Finding novel NCRs is needed for integrated pest management. RESULTS: We analyzed permethrin, an insecticide, induced transcriptomes of cultured fat bodies of the silkworm Bombyx mori, a lepidopteran model insect. Differentially expressed gene analyses suggested Bacillus thuringiensis (Bt) toxin was an NCR toxin of permethrin. NCR to permethrin and Bt toxins in Thysanoplusia intermixta, the agricultural pest moth, was examined; the children of permethrin survivor T. intermixta had increased susceptibility to Bt toxin. CONCLUSIONS: A novel NCR toxin pair, permethrin and Bt toxin, was discovered. The screening and developmental method for negatively correlated cross-resistance toxins established in this study was effective, in vitro screening using model organisms and in vivo verification using agricultural pests.

2019 ◽  
Author(s):  
Takuma Sakamoto ◽  
Toshinori Kozaki ◽  
Norichika Ogata

AbstractActing against the development of resistance to antibiotics and insecticides, involving negatively correlated cross-resistance (NCR) is an alternative to use- and-discard approach. It is termed NCR that toxic chemicals interact with each other and resistance of target organisms to one chemical is sometimes associated with increased susceptibility to a second chemical when; an allele confers resistance to one toxic chemical and hyper-susceptibility to another, NCR occurs. However, only 11 toxin pairs have been revealed to cause NCR in insects. Finding novel NCRs is needed for integrated pest management. We analyzed permethrin, an insecticide, induced transcriptomes of cultured fat bodies of the silkworm Bombyx mori, a lepidopteran model insect. Differentially expressed gene analyses suggested Bacillus thuringiensis (Bt) toxin was an NCR toxin of permethrin. NCR to permethrin and Bt toxins in Thysanoplusia intermixta, the agricultural pest moth, was examined; the children of permethrin survivor T. intermixta had increased susceptibility to Bt toxin. A novel NCR toxin pair, permethrin and Bt toxin, was discovered. The screening and developmental method for negatively correlated cross-resistance toxins established in this study was effective, in vitro screening using model organisms and in vivo verification using agricultural pests.


1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Michael R. Yeaman ◽  
Liana C. Chan ◽  
Nagendra N. Mishra ◽  
Arnold S. Bayer

Streptococcus mitis-oralis (S. mitis-oralis) infections are increasingly prevalent in specific populations, including neutropenic cancer and endocarditis patients. S. mitis-oralis strains have a propensity to evolve rapid, high-level and durable resistance to daptomycin (DAP-R) in vitro and in vivo, although the mechanism(s) involved remain incompletely defined. We examined mechanisms of DAP-R versus cross-resistance to cationic host defense peptides (HDPs), using an isogenic S. mitis-oralis strain-pair: (i) DAP-susceptible (DAP-S) parental 351-WT (DAP MIC = 0.5 µg/mL), and its (ii) DAP-R variant 351-D10 (DAP MIC > 256 µg/mL). DAP binding was quantified by flow cytometry, in-parallel with temporal (1–4 h) killing by either DAP or comparative prototypic cationic HDPs (hNP-1; LL-37). Multicolor flow cytometry was used to determine kinetic cell responses associated with resistance or susceptibility to these molecules. While overall DAP binding was similar between strains, a significant subpopulation of 351-D10 cells hyper-accumulated DAP (>2–4-fold vs. 351-WT). Further, both DAP and hNP-1 induced cell membrane (CM) hyper-polarization in 351-WT, corresponding to significantly greater temporal DAP-killing (vs. 351-D10). No strain-specific differences in CM permeabilization, lipid turnover or regulated cell death were observed post-exposure to DAP, hNP-1 or LL-37. Thus, the adaptive energetics of the CM appear coupled to the outcomes of interactions of S. mitis-oralis with DAP and selected HDPs. In contrast, altered CM permeabilization, proposed as a major mechanism of action of both DAP and HDPs, did not differentiate DAP-S vs. DAP-R phenotypes in this S. mitis-oralis strain-pair.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2017 ◽  
Vol 17 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Thomson Patrick Joseph ◽  
Warren Chanda ◽  
Arshad Ahmed Padhiar ◽  
Samana Batool ◽  
Shao LiQun ◽  
...  

Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).


2010 ◽  
Vol 54 (7) ◽  
pp. 2893-2900 ◽  
Author(s):  
Antoaneta Y. Sokolova ◽  
Susan Wyllie ◽  
Stephen Patterson ◽  
Sandra L. Oza ◽  
Kevin D. Read ◽  
...  

ABSTRACT The success of nifurtimox-eflornithine combination therapy (NECT) for the treatment of human African trypanosomiasis (HAT) has renewed interest in the potential of nitro drugs as chemotherapeutics. In order to study the implications of the more widespread use of nitro drugs against these parasites, we examined the in vivo and in vitro resistance potentials of nifurtimox and fexinidazole and its metabolites. Following selection in vitro by exposure to increasing concentrations of nifurtimox, Trypanosoma brucei brucei nifurtimox-resistant clones designated NfxR1 and NfxR2 were generated. Both cell lines were found to be 8-fold less sensitive to nifurtimox than parental cells and demonstrated cross-resistance to a number of other nitro drugs, most notably the clinical trial candidate fexinidazole (∼27-fold more resistant than parental cells). Studies of mice confirmed that the generation of nifurtimox resistance in these parasites did not compromise virulence, and NfxR1 remained resistant to both nifurtimox and fexinidazole in vivo. In the case of fexinidazole, drug metabolism and pharmacokinetic studies indicate that the parent drug is rapidly metabolized to the sulfoxide and sulfone form of this compound. These metabolites retained trypanocidal activity but were less effective in nifurtimox-resistant lines. Significantly, trypanosomes selected for resistance to fexinidazole were 10-fold more resistant to nifurtimox than parental cells. This reciprocal cross-resistance has important implications for the therapeutic use of nifurtimox in a clinical setting and highlights a potential danger in the use of fexinidazole as a monotherapy.


2002 ◽  
Vol 86 (10) ◽  
pp. 1652-1657 ◽  
Author(s):  
R E Aird ◽  
J Cummings ◽  
A A Ritchie ◽  
M Muir ◽  
R E Morris ◽  
...  

1997 ◽  
Vol 41 (9) ◽  
pp. 1898-1903 ◽  
Author(s):  
D Sereno ◽  
J L Lemesre

Using a continuous drug pressure protocol, we induced pentamidine resistance in an active and dividing population of amastigote forms of Leishmania mexicana. We selected in vitro two clones with different levels of resistance to pentamidine, with clone LmPENT5 being resistant to 5 microM pentamidine, while clone LmPENT20 was resistant to 20 microM pentamidine. Resistance indexes (50% inhibitory concentration [IC50] after drug presure/IC50 before drug pressure) of 2 (LmPENT5) and 6 (LmPENT20) were determined after drug selection. Both resistant clones expressed significant cross-resistance to diminazene aceturate and primaquine. Pentamidine resistance was not reversed by verapamil, a calcium channel blocker known to reverse multidrug resistance (A. J. Bitonti, et al., Science 242:1301-1303, 1988; A. R. C. Safa et al., J. Biol. Chem. 262:7884-7888, 1987). No difference in the in vitro infectivity for resident mouse macrophages was observed between the wild-type clone (clone LmWT) and pentamidine-resistant clones. During in vitro infectivity experiments, when the life cycle was performed starting from the intramacrophagic amastigote stage, the drug resistance of the resulting LmPENT20 amastigotes was preserved even if the intermediate promastigote stage could not be considered resistant to 20 microM pentamidine. In the same way, when a complete developmental sequence of L. mexicana was achieved axenically by manipulation of appropriate culture conditions, the resulting axenically grown LmPENT20 amastigotes remained pentamidine resistant, whereas LmPENT5 amastigotes lost their ability to resist pentamidine, with IC50s and index of resistance values close to those for the LmWT clone. These results strongly indicate that the level of pentamidine tolerated by resistant amastigotes after the life cycle was dependent on the induced level of resistance. This fact could be significant in the in vivo transmission of drug-resistant parasites by Phlebotominae. Particular attention should be given to the finding that the emergence of parasite resistance is a potential risk of the use of inadequate doses as therapy in humans.


2011 ◽  
Vol 56 (2) ◽  
pp. 703-707 ◽  
Author(s):  
Sergio Wittlin ◽  
Eric Ekland ◽  
J Carl Craft ◽  
Julie Lotharius ◽  
Ian Bathurst ◽  
...  

ABSTRACTWith the emergence ofPlasmodium falciparuminfections exhibiting increased parasite clearance times in response to treatment with artemisinin-based combination therapies, the need for new therapeutic agents is urgent. Solithromycin, a potent new fluoroketolide currently in development, has been shown to be an effective, broad-spectrum antimicrobial agent. Malarial parasites possess an unusual organelle, termed the apicoplast, which carries a cryptic genome of prokaryotic origin that encodes its own translation and transcription machinery. Given the similarity of apicoplast and bacterial ribosomes, we have examined solithromycin for antimalarial activity. Other antibiotics known to target the apicoplast, such as the macrolide azithromycin, demonstrate a delayed-death effect, whereby treated asexual blood-stage parasites die in the second generation of drug exposure. Solithromycin demonstrated potentin vitroactivity against the NF54 strain ofP. falciparum, as well as against two multidrug-resistant strains, Dd2 and 7G8. The dramatic increase in potency observed after two generations of exposure suggests that it targets the apicoplast. Solithromycin also retained potency against azithromycin-resistant parasites derived from Dd2 and 7G8, although these lines did demonstrate a degree of cross-resistance. In anin vivomodel ofP. bergheiinfection in mice, solithromycin demonstrated a 100% cure rate when administered as a dosage regimen of four doses of 100 mg/kg of body weight, the same dose required for artesunate or chloroquine to achieve 100% cure rates in this rodent malaria model. These promisingin vitroandin vivodata support further investigations into the development of solithromycin as an antimalarial agent.


Sign in / Sign up

Export Citation Format

Share Document