Monitoring Forest Fire using Geo-Spatial Information Techniques and Spatial Statistics: One Case Study of Forest fire in Margalla Hills, Islamabad, Pakistan

2020 ◽  
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Saima Siddiqui

Abstract Background Understanding the spatial patterns of forest fires is of key importance for fire risk management with ecological implications. Fire occurrence, which may result from the presence of an ignition source and the conditions necessary for a fire to spread, is an essential component of fire risk assessment. Methods The aim of this research was to develop a methodology for analyzing spatial patterns of forest fire danger with a case study of tropical forest fire at Margalla Hills, Islamabad, Pakistan. A geospatial technique was applied to explore influencing factors including climate, vegetation, topography, human activities, and 299 fire locations. We investigated the spatial extent of burned areas using Landsat data and determined how these factors influenced the severity rating of fires in these forests. The importance of these factors on forest fires was analyzed and assessed using logistic and stepwise regression methods. Results The findings showed that as the number of total days since the start of fire has increased, the burned areas increased at a rate of 25.848 ha / day (R 2 = 0.98). The average quarterly mean wind speed, forest density, distance to roads and average quarterly maximum temperature were highly correlated to the daily severity rating of forest fires. Only the average quarterly maximum temperature and forest density affected the size of the burnt areas. Fire maps indicate that 22% of forests are at the high and very high level (> 0.65), 25% at the low level (0.45-0.65), and 53% at the very low level (0.25 – 0.45). Conclusion Through spatial analysis, it is found that most forest fires happened in less populated areas and at a long distance from roads, but some climatic and human activities could have influenced fire growth. Furthermore, it is demonstrated that geospatial information technique is useful for exploring forest fire and their spatial distribution.

Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 30 ◽  
Author(s):  
Ismael Vallejo-Villalta ◽  
Estefanía Rodríguez-Navas ◽  
Joaquín Márquez-Pérez

Forest fires are a critical environmental problem facing current societies, with serious repercussions at ecological, economic and personal safety levels. Detailed maps enabling identification of areas liable to be affected is an indispensable first step allowing different prevention and protection measures vis-à-vis this kind of phenomenon. These maps could be especially valuable for use in land management and emergency planning at a municipality scale. A methodology is shown for producing local maps of mid- and short-term forest fire risk, integrating both natural and human factors. Among natural factors, variables normally used in hazard models are considered as fuel models, slopes or vegetation moisture stress. From the human perspective, more novel aspects have been evaluated, meant either to assess human-induced hazard (closeness to forestland of causative elements or the ability of people to penetrate the forest environment), or to assess vulnerability, considering the population’s location in urban centres and scattered settlements. The methodology is applied in a municipality of Andalusia (Spain) and obtained results were compared to burned areas maps.


Author(s):  
S. Mariscal ◽  
M. Ríos ◽  
F. Soria

Abstract. Forest fires have negative effects on biodiversity, the atmosphere and human health. The paper presents a spatial risk model as a tool to assess them. Risk areas refer to sectors prone to the spread of fire, in addition to the influence of human activity through remote sensing and multi-criteria analysis. The analysis includes information on land cover, land use, topography (aspect, slope and elevation), climate (temperature and precipitation) and socio-economic factors (proximity to settlements and roads). Weights were assigned to each in order to generate the forest fire risk map. The investigation was carried for a Biological Reserve in Bolivia because of the continuous occurrence of forest fires. Five risk categories for forest fires were derived: very high, high, moderate, low and very low. In summary, results suggest that approximately 67% of the protected area presents a moderate to very high risk; in the latter, populated areas are not dense which reduces the actual risk to the type of events analyzed.


2021 ◽  
Vol 63 (1) ◽  
pp. 21-35
Author(s):  
Djamel Anteur ◽  
Abdelkrim Benaradj ◽  
Youcef Fekir ◽  
Djillali Baghdadi

Abstract The great forest of Zakour is located north of the commune of Mamounia (department of Mascara). It is considered the lung of the city of Mascara, covers an area of 126.8 ha. It is a forest that is subject to several natural and human constraints. Among them, the fires are a major danger because of their impacts on forest ecosystems. The purpose of this work is to develop a fire risk map of the Zakour Forest through the contribution of geomatics according to natural and anthropogenic conditions (human activities, agglomeration, agricultural land) while integrating information from ground on the physiognomy of the vegetation. For this, the creation of a clearer fire risk map to delimit the zones potentially sensitive to forest fires in the forest area of Zakour. This then allows good implementation of detection management plans, for better prevention and decision-making assistance in protecting and fighting forest fires.


2021 ◽  
Author(s):  

Forest and wildland fires are a natural part of ecosystems worldwide, but large fires in particular can cause societal, economic and ecological disruption. Fires are an important source of greenhouse gases and black carbon that can further amplify and accelerate climate change. In recent years, large forest fires in Sweden demonstrate that the issue should also be considered in other parts of Fennoscandia. This final report of the project “Forest fires in Fennoscandia under changing climate and forest cover (IBA ForestFires)” funded by the Ministry for Foreign Affairs of Finland, synthesises current knowledge of the occurrence, monitoring, modelling and suppression of forest fires in Fennoscandia. The report also focuses on elaborating the role of forest fires as a source of black carbon (BC) emissions over the Arctic and discussing the importance of international collaboration in tackling forest fires. The report explains the factors regulating fire ignition, spread and intensity in Fennoscandian conditions. It highlights that the climate in Fennoscandia is characterised by large inter-annual variability, which is reflected in forest fire risk. Here, the majority of forest fires are caused by human activities such as careless handling of fire and ignitions related to forest harvesting. In addition to weather and climate, fuel characteristics in forests influence fire ignition, intensity and spread. In the report, long-term fire statistics are presented for Finland, Sweden and the Republic of Karelia. The statistics indicate that the amount of annually burnt forest has decreased in Fennoscandia. However, with the exception of recent large fires in Sweden, during the past 25 years the annually burnt area and number of fires have been fairly stable, which is mainly due to effective fire mitigation. Land surface models were used to investigate how climate change and forest management can influence forest fires in the future. The simulations were conducted using different regional climate models and greenhouse gas emission scenarios. Simulations, extending to 2100, indicate that forest fire risk is likely to increase over the coming decades. The report also highlights that globally, forest fires are a significant source of BC in the Arctic, having adverse health effects and further amplifying climate warming. However, simulations made using an atmospheric dispersion model indicate that the impact of forest fires in Fennoscandia on the environment and air quality is relatively minor and highly seasonal. Efficient forest fire mitigation requires the development of forest fire detection tools including satellites and drones, high spatial resolution modelling of fire risk and fire spreading that account for detailed terrain and weather information. Moreover, increasing the general preparedness and operational efficiency of firefighting is highly important. Forest fires are a large challenge requiring multidisciplinary research and close cooperation between the various administrative operators, e.g. rescue services, weather services, forest organisations and forest owners is required at both the national and international level.


2020 ◽  
Vol 10 (22) ◽  
pp. 8213
Author(s):  
Yoojin Kang ◽  
Eunna Jang ◽  
Jungho Im ◽  
Chungeun Kwon ◽  
Sungyong Kim

Forest fires can cause enormous damage, such as deforestation and environmental pollution, even with a single occurrence. It takes a lot of effort and long time to restore areas damaged by wildfires. Therefore, it is crucial to know the forest fire risk of a region to appropriately prepare and respond to such disastrous events. The purpose of this study is to develop an hourly forest fire risk index (HFRI) with 1 km spatial resolution using accessibility, fuel, time, and weather factors based on Catboost machine learning over South Korea. HFRI was calculated through an ensemble model that combined an integrated model using all factors and a meteorological model using weather factors only. To confirm the generalized performance of the proposed model, all forest fires that occurred from 2014 to 2019 were validated using the receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) values through one-year-out cross-validation. The AUC value of HFRI ensemble model was 0.8434, higher than the meteorological model. HFRI was compared with the modified version of Fine Fuel Moisture Code (FFMC) used in the Canadian Forest Fire Danger Rating Systems and Daily Weather Index (DWI), South Korea’s current forest fire risk index. When compared to DWI and the revised FFMC, HFRI enabled a more spatially detailed and seasonally stable forest fire risk simulation. In addition, the feature contribution to the forest fire risk prediction was analyzed through the Shapley Additive exPlanations (SHAP) value of Catboost. The contributing variables were in the order of relative humidity, elevation, road density, and population density. It was confirmed that the accessibility factors played very important roles in forest fire risk modeling where most forest fires were caused by anthropogenic factors. The interaction between the variables was also examined.


FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1818
Author(s):  
Bruna Kovalsyki ◽  
Alexandre França Tetto ◽  
Antonio Carlos Batista ◽  
Nilton José Sousa ◽  
Marta Regina Barrotto do Carmo ◽  
...  

Forest fire hazard and risk mapping is an essential tool for planning and decision making regarding the prevention and suppression of forest fires,as well as fire management in general, as it allows the spatial visualization of areas with higher and lower ignition probability. This study aimed to develop a forest fire risk zoning map for the Vila Velha State Park and its surroundings (Ponta Grossa, Paraná State, Brazil), for the period of higher incidence of forest fires (from April to September) and for the period of lower incidence (from October to March). The following risk and hazard variables were identified: human presence, usage zones, topographical features, soil coverage and land use and meteorological conditions. Coefficients (0 to 5) reflecting the fire risk or hazard degree were allocated to each variable in order to construct the maps. The integration of these maps, through a weighting model, resulted in the final risk mapping. The very high and extreme risk classes represented about 38% of the area for both periods. The forest fire risk mapping spatially represented the levels of fire risk in the area, allowing the managers to identify the priority sectors for preventive actions in both fire seasons.


2021 ◽  
Author(s):  
Christopher Spence ◽  
Newell Hedstrom ◽  
Suzanne Tank ◽  
William Quinton ◽  
David Olefeldt ◽  
...  

<p>Forest fires are becoming more frequent and larger in the subarctic Canadian Shield, so understanding the effect of fire on catchment scale water budgets is becoming increasingly important.  The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km<sup>2</sup> subarctic Canadian Shield basin.  Water budget components were measured in a pair of catchments; one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but ground thaw was deeper in burned areas.  Snowpacks were deeper in burns. Differences in streamflow between the catchments were within measurement uncertainty.  Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment.  A new framework to assess hydrological resilience to forest fire across the region revealed that watersheds with higher bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly wet conditions.  </p>


2020 ◽  
Vol 20 ◽  
pp. 01003
Author(s):  
Ariesta Lestari ◽  
Katriani Puspita Ayu

Forest fire is one of environmental problem happens in Central Kalimantan. The fire does not only damage the forest ecosystem and biodiversity but also threaten the health and socio-economic of local people. Forest fire in Central Kalimantan is widely known as human-made, such as the process of shifting cultivation and land clearing. The expansion of forest into palm oil plantation is often blamed as the cause of forest fire since the forest clearing involves a massive amount of fires. Therefore, this study aims to explore whether the existence of palm oil cultivation contributes to the occurrence of forest fires. We used satellite imagery of hotspot, and overlay it with the land use data to generate the fire risk zone map using geographic information system (GIS) method. Through the map, the risk of fire can be monitored in advance to help the fire authority provide the act of mitigation. The result of this study suggested that risk mapping is vital for forest fire management to mitigate the spread of forest fire. The region to be fire-prone within the palm oil cultivation is suggested to form a preventive act through active forest-fires monitoring. In sum, this study is expected to provide a map of forest fires' risk around the cultivation area, mainly palm oil plantation, and help the fire authorities as well as stakeholders to identify the risk zone for fires prevention in the future.


Sign in / Sign up

Export Citation Format

Share Document