scholarly journals Effect of Electron Beam Welding Parameters on Temperature and Stress Field of AISI P20 Tool Steel in Vacuum Roll-cladding Process

Author(s):  
lanyu mao ◽  
Zongan Luo ◽  
Yingying Feng ◽  
Xiaoming Zhang

Abstract Vacuum roll-cladding (VRC) is an effective method to produce high quality ultra-heavy AISI P20 plate steel. In the process of VRC, reasonable welding process of electron beam welding (EBW) can significantly avoid welding cracks and reduce the cost. In this paper, the electron beam welding process of AISI P20 tool steel was simulated by using a combined heat source model based on finite element method, and the temperature field and stress field under different welding parameters were studied respectively . The results showed that welding parameters have a greater effect on weld penetration than that of weld width, which making the aspect ratio increases with the increase of welding current, and decrease with the increase of welding speed. The weld morphologies were consistent with those of the modeling and the measured thermal heat curves were good agreement with those of simulated, which was verified the feasibility and effectiveness of temperature fields. The results of stress fields under different welding parameters indicat ed that lower welding speed and higher welding current resulting in lower residual stress at welded joint, which means lower risk of cracking after EBW. The results of this study have been successfully applied to industrial production.

2010 ◽  
Vol 34-35 ◽  
pp. 1516-1520
Author(s):  
Hong Ye ◽  
Han Li Yang ◽  
Zhong Lin Yan

Electron beam welding process of AZ61 with 10mm thickness magnesium alloys was investigated. The influence of processing parameters including focusing current, welding beam current and welding speed was researched. The results show that an ideal weld bead can be formed by choosing processing parameters properly. Focusing current is main parameter that determines cross section shape. The beam current and welding speed are main parameters that determine the weld width and dimensions. The test results for typical welds indicate that the microhardness of the weld zone is better than that of the base meta1. A fine-grained weld region has been observed and no obvious heat-affected zone is found. The fusion zone mainly consists of small α-Mg phase and β-Mg17A112. The small grains and β phases in the joint are believed to play an important role in the increase of the strength of weld for AZ61 magnesium alloys.


Author(s):  
Nick Bagshaw ◽  
Chris Punshon ◽  
John Rothwell

Boiler and steam piping components in power plants are fabricated using creep strength enhanced ferritic (CSEF) steels, which often operate at temperatures above 550°C. Modification of alloy content within these steels has produced better creep performance and higher operating temperatures, which increases the process efficiency of power plants. The improved materials, however, are susceptible to type IV cracking at the welded regions. A better understanding of type IV cracking in these materials is required and is the basis of the Technology Strategy Board (TSB) UK funded VALID (Verified Approaches to Life Management & Improved Design of High Temperature Steels for Advanced Steam Plants) project. In order to study the relationship between creep performance and heat input during welding, several welds with varying amounts of heat input and resultant HAZ widths were produced using the electron beam welding process. The welding parameters were developed with the aid of weld process modeling using the finite element (FE) method, in which the welding parameters were optimized to produce low, medium and high heat input welds. In this paper, the modeling approach and the development of electron beam welds in ASTM A387 grade P92 pipe material are presented. Creep specimens were extracted from the welded pipes and testing is ongoing. The authors acknowledge the VALID project partners, contributors and funding body: Air Liquide, Metrode, Polysoude, E.ON New Build & Technology Ltd, UKE.ON, Doosan, Centrica Energy, SSE, Tenaris, TU Chemnitz, The University of Nottingham, The Open University and UK TSB. Paper published with permission.


2020 ◽  
Vol 994 ◽  
pp. 36-43
Author(s):  
Ján Urminský ◽  
Milan Marônek ◽  
Jozef Bárta ◽  
Michaela Lopatková ◽  
Róbert Hrušecký

The electron beam welding (EBW) parameters have significant influence on weld surface appearance and porosity formation. Besides basic welding parameters, such as acceleration voltage, welding current, focusing current and welding speed, the beam oscillation during EBW plays an important role in weld metal formation and directly impacts the final welded joints properties. The influence of technological movements during EBW on the properties of aluminium-lithium alloy welded joints was studied. The same frequency and different amplitude as well as same amplitude and different frequency were chosen. The other welding parameters were constant.


2015 ◽  
Vol 1088 ◽  
pp. 130-134
Author(s):  
Ya Rong Wang ◽  
Yang Yu ◽  
Wei Chao Zhang

The high vacuum electron beam welding-brazing was used to joining vanadium alloy (V-5Cr-5Ti) with stainless–steel (HR-2). The temperature fields and stress distributions in the V-5Cr-5Ti/HR-2 joint during the welding process were numerically simulated and the effect of the electron beam off-set distance was studied. The results show that the accurate heat input and proper molten pool position can help to control the fusion ratio of the V/Fe. The electron beam should off set on the stainless steel side rather than vanadium alloy side, and the best range of the distances off-set is 0-0.5mm. The residual stress appears to be bimodal and asymmetric. The maximum lateral residual tensile stress reached 388MPa at the V-5Cr-5Ti side. The joints with the characters of welding and brazing and the metallurgically bonded joint was achieved with 0.3mm beam off-set. With the liquid-to-solid interalloying of dissimilar materials controlled well, a reaction zone is gained on the interface. The maximum tensile strength of vanadium alloy/stainless-steel dissimilar alloy jointswas up to 200MPa with no defect.


2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Haikal Haikal ◽  
Moch. Chamim ◽  
Deni Andriyansyah ◽  
Apri Wiyono ◽  
Ario Sunar Baskoro ◽  
...  

<p class="Abstract">In this study, research on the use of the External Magnetic Field method – Tungsten Inert Gas was done to determine the effect of welding arc compression on the quality of <em>AISI 304 </em>thin plate weld. The welding process was performed using autogenous welds. In this study, an external magnetic field was generated by placing a magnetic solenoid around the <em>TIG</em> welding torch. Enabling this electromagnetic field is done dynamically using a microcontroller. Welding parameters used are welding current <em>100; 105; 110 A</em> and welding speed <em>1.6; 1.8; 2.05 mm/s</em>. The results of this study showed that <em>EMF-TIG</em> welding can produce a more uniform bead width along the weld line with a standard deviation of 0.08 compared with conventional <em>TIG </em>welding of <em>0.12</em>. Increased welding speed of  <em>2.05 mm/s</em> causes no effect on the addition of an external magnetic field to the width of the weld bead. The current parameters are <em>105 A </em>with a speed of <em>1.6; 1.8; 2.05 mm/s</em> resulted in compression of the top bead width by <em>0.87; 0.61; 0.1 mm</em>. The welding parameters with a current of 105 A and welding speed of <em>1.6 mm/s</em> have a larger upper bead compression effect of <em>0.84 mm</em> compared to <em>110 A</em> currents of <em>0.38 mm</em>. Moreover, the <em>D/W</em> ratio obtained under an external magnetic field was higher than without magnetic.</p>


2019 ◽  
Vol 16 (06) ◽  
pp. 1840023
Author(s):  
Xiaogang Liu ◽  
Haiding Guo ◽  
M. M. Yu

In the paper, the grain growth of TC4-DT (Damage Tolerance) alloy joint during electron beam welding (EBW) process was simulated by using Cellular Automaton method. In order to consider the effects of the growth of neighborhood cellular on the center cells in the model, the solid fraction and solute distribution algorithms of classical CA model were improved. The growth of equiaxed grains and columnar crystals under uniform and nonuniform temperature fields was simulated successfully by applying the modified model, respectively. The temperature distribution near the fusion line of TC4-DT EBW joint was also calculated by using double ellipsoid heat source model. Then, coupling the CA model with the temperature field, the grain growth process of the cross-section of the welded zone was simulated. The simulation result fits well with experimental ones on the morphology and the size of the columnar crystals.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 88-95
Author(s):  
Sergey O. Kurashkin ◽  
◽  
Vadim S. Tynchenko ◽  
Aleksandr V. Murygin ◽  
◽  
...  

Modeling of electron beam welding processes is one of the most important parts of applied research, because full-scale experimental investigations are either expensive or highly labor intensive. The problem of modeling the temperature fields at the electron beam entering stage during welding is considered. The aim of the study is to simplify the adjustment of the electron beam welding process technological parameters and to elaborate and develop more efficient control algorithms through replacing full-scale experiments by model ones. The mathematical body of the proposed solutions is constructed using the theories of thermal and welding processes, based on which the energy distribution mathematical models are developed. For practically implementing the computations, an algorithmic support is presented that allows the mathematical models to be applied in modern modeling systems, such as Matlab, Comsol Multiphysics, and Ansys. Apart from supplementing the set of existing mathematical models of the electron beam welding process, the obtained models for calculating the temperature in the beam entering area widen their application for calculating and optimizing the welding process, taking into account the workpiece temperature in the electron beam entering area. By using the proposed solutions, several numerical experiments were carried out for a workpiece made of VT-14 titanium alloy and two pieces of different thickness made of AMg-6 aluminum alloy. The obtained temperature fields and the rms values of process parameters are almost identical with the results of previously conducted full-scale studies.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Karthimani T ◽  
Babu N

This works aims at the analysis and optimization of joining similar grades of stainless steel by TIG welding. TIG welding may use a filler material. There is a variant in the process which does not require filler material. Such process is known as Autogenous TIG welding process. The parameters like current, welding speed and gas flow rate are the variables in the study. The objective of this research is to determine the influence of various welding parameters on the weld bead of 316 SS by using Taguchi technique. A plan of experiments based on Taguchi technique method has been carried out. Orthogonal array, signal to noise (S/N) Ratio, Analysis of variance (ANOVA) are employed for studying the welding characteristics of material & to optimize the weld parameters. The result obtained are the output from each parameter, through which optimal parameters are found out for maximum tensile strength. It is found that -welding current followed by welding speed are major parameters influencing mechanical properties of welded joint


2011 ◽  
Vol 418-420 ◽  
pp. 1640-1646
Author(s):  
Shao Gang Wang ◽  
Kuang Yu ◽  
Li Xing

The numerical simulation of electron beam welding temperature field for 2090 Al-Li alloy sheet of 2 mm thickness is conducted by using the ANSYS software. The combined model of Gauss surface heat source with cylindrical body heat source in linear attenuation is used according to the unique nail-shaped weld of electron beam welding joint, and the distribution cloud image of temperature field and the instantaneous weld thermal cycle curves of Al-Li alloy electron beam welding are obtained through calculation. The effect of welding parameters such as electron beam power and welding speed on the distribution of temperature field and weld width is investigated. Results show that electron beam welding has a very high rate of both temperature ascending and descending, and the rate of temperature ascending is higher than that of descending. With the increase of electron beam power or decrease of welding speed, the temperature of fusion zone elevates, and the weld width increases. The appearance of weld obtained through numerical simulation is greatly consistent with the practical welding.


Sign in / Sign up

Export Citation Format

Share Document