scholarly journals A Prognostic Model for Hepatocellular Carcinoma Patients Based on Signature Ferroptosis-related Genes

Author(s):  
Sizhe Wan ◽  
Yiming Lei ◽  
Mingkai Li ◽  
Bin Wu

Abstract BackgroundWith the increasing number of HCC patients, it is necessary to accurately predicting the prognosis of these patients. Ferroptosis has been confirmed to be closely related to HCC progression. However, there is still a challenge in predicting the survival of HCC patients through ferroptosis-related genes.MethodThe RNA-seq data and corresponding clinical data of HCC from TCGA database were downloaded to establish a prognosis model, and data of ICGC and GSE14520 as the validation set. The risk score was constructed with 5 genes identified by univariate and LASSO Cox regression analysis. Then, risk score, TNM stage and cirrhosis were included to construct a nomogram, through univariate and multivariate Cox regression analysis.Results5 genes were identified from 70 ferroptosis-related DEGs to construct a gene signature to predict HCC patient survival from TCGA cohort. PCA and heatmap results show that there are obvious differences in patients with different score groups. Then, we included risk score, TNM stage and cirrhosis to construct a nomogram to further predict the overall survival of the patients. Survival analysis indicates that overall survival of the low- risk group is significantly higher than that of the high-risk group. Similarly, the data in the GSE14520 cohort also confirmed good performance for the nomogram. Furthermore, KEGG and GO functional enrichment analyses indicates the difference in overall survival between groups is closely related to immune-related pathways. Finally, through analyzing the immune status of all patients, we found that compared with patients in the low-risk group, “Macrophages M0”, “T cells CD8”, and “T cells regulatory” of the high-risk group were significantly higher.ConclusionThe nomogram based on ferroptosis-related genes has a good performance for the prognosis of HCC patients. The model may provide a reference for evaluation of HCC patients by targeting ferroptosis.

2022 ◽  
Author(s):  
Yujian Xu ◽  
Youbai Chen ◽  
Zehao Niu ◽  
Zheng Yang ◽  
Jiahua Xing ◽  
...  

Abstract Ferroptosis-related lncRNAs are promising biomarkers for predicting the prognosis of many cancers. However, a ferroptosis-related signature to predict the prognosis of cutaneous melanoma (CM) has not been identified. The purpose of our study was to construct a ferroptosis-related lncRNA signature to predict prognosis and immunotherapy efficacy in CM. Ferroptosis-related differentially expressed genes (FDEGs) and lncRNAs (FDELs) were identified using TCGA, GTEx, and FerrDb datasets. We performed Cox and LASSO regressions to identify key FDELs, and constructed a risk score to stratify patients into high- and low-risk groups. A nomogram was developed for clinical use. We performed gene set enrichment analyses (GSEA) to identify significantly enriched pathways. Differences in the tumor microenvironment (TME) between the 2 groups were assessed using 7 algorithms. To predict the efficacy of immune checkpoint inhibitors (ICI), we analyzed the association between PD1 and CTLA4 expression and the risk score. Finally, differences in Tumor Mutational Burden (TMB) and molecular drugs Sensitivity between the 2 groups were performed. Here, we identified 5 lncRNAs (AATBC, AC145423.2, LINC01871, AC125807.2, and AC245041.1) to construct the risk score. The AUC of the lncRNA signature was 0.743 in the training cohort and was validated in the testing and entire cohorts. Kaplan-Meier analyses revealed that the high-risk group had poorer prognosis. Multivariate Cox regression showed that the lncRNA signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The 1-, 3-, and 5-year survival probabilities for CM patients were 92.7%, 57.2%, and 40.2% with an AUC of 0.804, indicating a good accuracy and reliability of the nomogram. GSEA showed that the high-risk group had lower ferroptosis and immune response. TME analyses confirmed that the high-risk group had lower immune cell infiltration (e.g., CD8+ T cells, CD4+ memory-activated T cells, and M1 macrophages) and lower immune functions (e.g., immune checkpoint activation). Low-risk patients whose disease expressed PD1 or CTLA4 were likely to respond better to ICIs. The analysis demonstrated that the TMB had significantly difference between low- and high- risk groups. Chemotherapy drugs, such as sorafenib, Imatinib, ABT.888 (Veliparib), Docetaxel, and Paclitaxel showed Significant differences in the estimated IC50 between the two risk groups. Overall, our novel ferroptosis-related lncRNA signature was able to accurately predict the prognosis and ICI outcomes of CM patients. These ferroptosis-related lncRNAs might be potential biomarkers and therapeutic targets for CM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susu Zheng ◽  
Xiaoying Xie ◽  
Xinkun Guo ◽  
Yanfang Wu ◽  
Guobin Chen ◽  
...  

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


2021 ◽  
Author(s):  
Jianyu Zhao ◽  
Bo Liu ◽  
Xiaoping Li

Abstract Background: Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for prediction of survival of ACC patients.Methods: The gene expression profile for ACC patients were downloaded from TCGA and GEO datasets. The univariate Cox analysis was applied to identify survival-related TFs and the LASSO Cox regression was conducted to construct the TF signature. The multivariate analysis was used to reveal the independent prognostic factors.Results: We identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6 using the univariate Cox analysis and LASSO Cox regression. The risk score based on the TF-signature could classify patients into low- and high-risk group. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival compared to the low-risk patients. ROC curves showed that the prognostic signature predicted the overall survival of ACC patients with good sensitivity and specificity. Furthermore, the TF-risk score was an independent prognostic factor.Conclusion: Taken together, we identified a 13-TF prognostic marker to predict overall survival in ACC patients.


2021 ◽  
Author(s):  
Jianyu Zhao ◽  
Bo Liu ◽  
Xiaoping Li

Abstract Background: Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for prediction of survival of ACC patients.Results: We identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6 using the univariate Cox analysis and LASSO Cox regression. The risk score based on the TF-signature could classify patients into low- and high-risk group. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival compared to the low-risk patients. ROC curves showed that the prognostic signature predicted the overall survival of ACC patients with good sensitivity and specificity. Furthermore, the TF-risk score was an independent prognostic factor.Conclusion: Taken together, we identified a 13-TF prognostic marker to predict overall survival in ACC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoxia Tong ◽  
Xiaofei Qu ◽  
Mengyun Wang

BackgroundCutaneous melanoma (CM) is one of the most aggressive cancers with highly metastatic ability. To make things worse, there are limited effective therapies to treat advanced CM. Our study aimed to investigate new biomarkers for CM prognosis and establish a novel risk score system in CM.MethodsGene expression data of CM from Gene Expression Omnibus (GEO) datasets were downloaded and analyzed to identify differentially expressed genes (DEGs). The overlapped DEGs were then verified for prognosis analysis by univariate and multivariate COX regression in The Cancer Genome Atlas (TCGA) datasets. Based on the gene signature of multiple survival associated DEGs, a risk score model was established, and its prognostic and predictive role was estimated through Kaplan-Meier (K-M) analysis and log-rank test. Furthermore, the correlations between prognosis related genes expression and immune infiltrates were analyzed via Tumor Immune Estimation Resource (TIMER) site.ResultsA total of 103 DEGs were obtained based on GEO cohorts, and four genes were verified in TCGA datasets. Subsequently, four genes (ADAMDEC1, GNLY, HSPA13, and TRIM29) model was developed by univariate and multivariate Cox regression analyses. The K-M plots showed that the high-risk group was associated with shortened survival than that in the low-risk group (P < 0.0001). Multivariate analysis suggested that the model was an independent prognostic factor (high-risk vs. low-risk, HR= 2.06, P < 0.001). Meanwhile, the high-risk group was prone to have larger breslow depth (P< 0.001) and ulceration (P< 0.001).ConclusionsThe four-gene risk score model functions well in predicting the prognosis and treatment response in CM and will be useful for guiding therapeutic strategies for CM patients. Additional clinical trials are needed to verify our findings.


Author(s):  
Dongyan Zhao ◽  
Xizhen Sun ◽  
Sidan Long ◽  
Shukun Yao

AbstractAimLong non-coding RNAs (lncRNAs) have been identified to regulate cancers by controlling the process of autophagy and by mediating the post-transcriptional and transcriptional regulation of autophagy-related genes. This study aimed to investigate the potential prognostic role of autophagy-associated lncRNAs in colorectal cancer (CRC) patients.MethodsLncRNA expression profiles and the corresponding clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, autophagy-related lncRNAs were identified by Pearson correlation test. Univariate Cox regression analysis and the least absolute shrinkage and selection operator analysis (LASSO) Cox regression model were performed to construct the prognostic gene signature. Gene set enrichment analysis (GSEA) was used to further clarify the underlying molecular mechanisms.ResultsWe obtained 210 autophagy-related genes from the whole dataset and found 1187 lncRNAs that were correlated with the autophagy-related genes. Using Univariate and LASSO Cox regression analyses, eight lncRNAs were screened to establish an eight-lncRNA signature, based on which patients were divided into the low-risk and high-risk group. Patients’ overall survival was found to be significantly worse in the high-risk group compared to that in the low-risk group (log-rank p = 2.731E-06). ROC analysis showed that this signature had better prognostic accuracy than TNM stage, as indicated by the area under the curve. Furthermore, GSEA demonstrated that this signature was involved in many cancer-related pathways, including TGF-β, p53, mTOR and WNT signaling pathway.ConclusionsOur study constructed a novel signature from eight autophagy-related lncRNAs to predict the overall survival of CRC, which could assistant clinicians in making individualized treatment.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110065
Author(s):  
Jing Wan ◽  
Peigen Chen ◽  
Yu Zhang ◽  
Jie Ding ◽  
Yuebo Yang ◽  
...  

Endometrial carcinoma (EC) is the fourth most common cancer in women. Some long non-coding RNAs (lncRNAs) are regarded as potential prognostic biomarkers or targets for treatment of many types of cancers. We aim to screen prognostic-related lncRNAs and build a possible lncRNA signature which can effectively predict the survival of patients with EC. We obtained lncRNA expression profiling from the TCGA database. The patients were classified into training set and verification set. By performing Univariate Cox regression model, Robust likelihood-based survival analysis, and Cox proportional hazards model, we developed a risk score with the Cox co-efficient of individual lncRNAs in the training set. The optimum cut-off point was selected by ROC analysis. Patients were effectively divided into high-risk group and low-risk group according to the risk score. The OS of the low-risk patients was significantly prolonged compared with that of the high-risk group. At last, we validated this 11-lncRNA signature in the verification set and the complete set. We identified an 11-lncRNA expression signature with high stability and feasibility, which can predict the survival of patients with EC. These findings provide new potential biomarkers to improve the accuracy of prognosis prediction of EC.


2020 ◽  
Author(s):  
Jianyu Zhao ◽  
Bo Liu ◽  
Xiaoping Li

Abstract Background Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for prediction of survival of ACC patients. Methods The gene expression profile for ACC patients were downloaded from TCGA and GEO datasets. The univariate Cox analysis was applied to identify survival-related TFs and the LASSO Cox regression was conducted to construct the TF signature. The multivariate analysis was used to reveal the independent prognostic factors. Results We identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6. The risk score based on the TF-signature could classify patients into low- and high-risk group. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival compared to the low-risk patients. ROC curves showed that the prognostic signature predicted the overall survival of ACC patients with good sensitivity and specificity. Furthermore, the TF-risk score was an independent prognostic factor. Conclusions Taken together, we identified a 13-TF prognostic marker to predict overall survival in ACC patients.


2021 ◽  
Author(s):  
Yong Lv ◽  
ShuGuang Jin ◽  
Bo Xiang

Abstract BackgroundTreatment of neuroblastoma is evolving toward precision medicine. LncRNAs can be used as prognostic biomarkers in many types of cancer.MethodsBased on the RNA-seq data from GSE49710, we built a lncRNAs-based risk score using the least absolute shrinkage and selection operation (LASSO) regression. Cox regression, receiver operating characteristic curves were used to evaluate the association of the LASSO risk score with overall survival. Nomograms were created and then validated in an external cohort from TARGET database. Gene set enrichment analysis was performed to identify the significantly changed biological pathways. ResultsThe 16-lncRNAs-based LASSO risk score was used to separate patients into high-risk and low-risk groups. In GSE49710 cohort, the high-risk group exhibited a poorer OS than those in the low-risk group (P<0.001). Moreover, multivariate Cox regression analysis demonstrated that LASSO risk score was an independent risk factor (HR=6.201;95%CI:2.536-15.16). The similar prognostic powers of the 16-lncRNAs were also achieved in the external cohort and in stratified analysis. In addition, a nomogram was established and worked well both in the internal validation cohort (C-index=0.831) and external validation cohort (C-index=0.773). The calibration plot indicated the good clinical utility of the nomogram. Gene set enrichment analysis (GSEA) indicated that high-risk group was related with cancer recurrence, metastasis and inflammatory associated pathways.ConclusionThe lncRNA-based LASSO risk score is a promising and potential prognostic tool in predicting the survival of patients with neuroblastoma. The nomogram combined the lncRNAs and clinical parameters allows for accurate risk assessment in guiding clinical management.


2021 ◽  
Author(s):  
Jianxin Li ◽  
Ting Han ◽  
Xin Wang ◽  
Yinchun Wang ◽  
Qingqiang Yang

Abstract Background Long non-coding RNA (lncRNA) is an important regulator of gene expression and serves fundamental role in immune regulation. The present study aimed to develop a novel immune-related lncRNA signature to accurately assess the prognosis of patients with colorectal cancer (CRC). Methods Transcriptome data and clinical information of patients with CRC were downloaded from The Cancer Genome Atlas (TCGA), and the immune-related mRNAs were extracted from immunomodulatory gene datasets IMMUNE RESPONSE and IMMUNE SYSTEM PROCESS based on the Molecular Signatures Database (MSigDB). Then, the immune-related lncRNAs were identified by a correlation analysis between immune-related mRNAs and lncRNAs. Subsequently, univariate, lasso and multivariate Cox regression were used to identify an immune-related lncRNA signature in training cohort, and the predict ability of the signature was further confirmed in the testing cohort and the entire TCGA cohort. Finally, the lncRNA-mRNA co-expression network was established to explore the biological role of the immune-related lncRNA signature. Results In total, 272 Immune-related lncRNAs were identified, five of which were applied to construct an immune-related lncRNA signature based on univariate, lasso and multivariate Cox regression analyses. The signature divided patients with CRC into low- and high-risk groups, and patients with CRC in high-risk group had poorer overall survival than those in low-risk group. Univariate and multivariate Cox regression analyses confirmed that the signature could be an independent prognostic factor in human CRC. Furthermore, functional enrichment analysis revealed that the immune-related lncRNA signature was significantly enriched in immune process and tumor classical pathways. Conclusions The present study revealed that the novel immune-related lncRNA signature could be exploited as underlying molecular biomarkers and therapeutic targets for the patients with CRC.


Sign in / Sign up

Export Citation Format

Share Document