scholarly journals Impact of Soil Moisture on Crop Yields in Major Rainfed Growing Regions of Peninsular India

Author(s):  
Santanu Kumar Bal ◽  
H. S. Shivaramu ◽  
P. Vijaya Kumar ◽  
H. Lingaraj ◽  
V. M. Sandeep ◽  
...  

Abstract Assessment of soil moisture availability and timely declaration of drought are keys for exemplary relief assistance in water stressed regions. Percent available soil moisture (PASM) is one among several drought declaration indices, needs evaluation with respect to individual crop and cropping system, as the amount of water requirement varies with respect to crop and its growth stage. Analysis of yield variability due to PASM was carried out by employing correlation and linear regression analyses based on long term observations in experiments conducted at different dry farming locations of the peninsular India. The range of available soil moisture in order to obtain at least 50 per cent of optimum yield in cereals (maize: 26 and finger millet: 52.9 PASM), pulses (pigeonpea: 37.2 PASM), oilseeds (soybean: 26.8 to 30.5, groundnut: 53.8 to 61.7 PASM) and commercial crops (cotton: 26.3 PASM) was 26 to 61 per cent. Establishment of these regression models helped in timely drought declaration / precise identification of drought hit areas and assuring feasible relief assistance. The outcomes of the study may be used for amending the existing drought norms (0–50; severe, 50–75; mild and 75–100; no drought) for provision of proportionate compensations to the farmers.

2014 ◽  
Vol 2 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Tika Bahadur Karki ◽  
Shrawan K. Sah ◽  
Resam B. Thapa ◽  
Andrew J. McDonald ◽  
Adam S. Davis ◽  
...  

Relay cropping of maize with fingermillet (maize/fingermillet) is the predominant cropping system for sustaining food security situation in the hilly regions of Nepal. In this region weed pressure severely reduces crop yields. Basic information on weed species composition, biomass production and their effect on crop yields and economics are lacking for this region. This information will be necessary to develop effective weed management strategies for the future. In light of this an empirical study was carried out in two representatives mid hill districts of Parbat and Baglung during summer season of 2010/2011 in Nepal. A total of 10 major weed species with densities of 172 in Parbat and 311 per 0.25m2 area in Baglung were observed. The highest percentage of both relative and absolute densities were recorded for Ageratum conyzoides in Parbat and Polygonum chinensis in Baglung. Weed infestation under farmers practice of crop management reduced the grain yield of maize by 1.985 Mt ha-1 (117%) in Baglung and 1.760 Mt ha-1 (108%) in Parbat. Similarly, in finger millet it was 0.489 Mt ha-1 (63%) in Baglung and 0.403 Mt ha-1 in Parbat. Similarly, the combined yield of both the crops was also significantly reduced by 79.3% and 61.7% in Baglung and Parbat respectively. Hence, weeds are directly affecting the crop performance in the region. Therefore, there is an urgent need to develop an alternative crop production system in the hills. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10790Int J Appl Sci Biotechnol, Vol. 2(3): 275-278  


1990 ◽  
Vol 70 (2) ◽  
pp. 125-136 ◽  
Author(s):  
C. CHANG ◽  
T. G. SOMMERFELDT ◽  
T. ENTZ ◽  
D. R. STALKER

Nineteen years of soil moisture content data at Lethbridge and two locations near Turin (Turin 1 and Turin 2) in southern Alberta were examined to evaluate the efficiency of follow for conserving moisture, and to calculate the long-term mean amount of water recharge during growing and nongrowing seasons under a fallow-cereal, 2-yr rotation and a continuous cropping system. Soil samples were taken annually from 1969 to 1987 to a depth of 120 cm in 30-cm intervals in the spring (early May) and fall (late September). A method for testing differences of means between nonstandard data using localized uncertainty associated with sliding polynomial smoothing was used to test for differences in the soil moisture contents due to cultural practices. The available soil moisture content of the soil to 120-cm depth was at least 50% of available water-holding capacity (AWHC) of the profile for the fallow treatment at Lethbridge and Turin 2, and, except in some years, at Turin 1. At seeding time, there was an average of 69 mm more available water (AW) in the fallow field than in the continuous cropping field at Lethbridge and 30, 35 and 27 mm more AW in the fallow field than in the fresh stubble field of a fallow-cereal, 2-yr rotation for Lethbridge, Turin 1 and Turin 2, respectively. The overall mean precipitation conserved as soil moisture for the fallow-cereal rotation practice was 23, 29 and 23% for Lethbridge, Turin 1 and Turin 2, respectively. The significantly higher soil water content at the 90- to 120-cm depth for the fallow field than for other fields during various periods of time indicates that the soil water recharge from precipitation might be deeper in the fallow field than in continuous cropping and fresh stubble of fallow-cereal rotation fields. The deeper soil water recharge could increase the available soil moisture for crop production and it could also contribute to ground water recharge. Key words: Soil water, available water content, continuous cropping, summerfallow


2010 ◽  
Vol 90 (1) ◽  
pp. 37-53 ◽  
Author(s):  
H. Wang ◽  
G N Flerchinger ◽  
R. Lemke ◽  
K. Brandt ◽  
T. Goddard ◽  
...  

The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) is a widely used modeling package that often simulates wheat yield and biomass well. However, some previous studies reported that its simulation on soil moisture was not always satisfactory. On the other hand, the Simultaneous Heat and Water (SHAW) model, a more sophisticated, hourly time step soil microclimate model, needs inputs of plant canopy development over time, which are difficult to measure in the field especially for a long-term period (longer than a year). The SHAW model also needs information on surface residue, but treats them as constants. In reality, however, surface residue changes continuously under the effect of tillage, rotation and environment. We therefore proposed to use DSSAT-CSM to simulate dynamics of plant growth and soil surface residue for input into SHAW, so as to predict soil water dynamics. This approach was tested using three conventionally tilled wheat rotations (continuous wheat, wheat-fallow and wheat-wheat-fallow) of a long-term cropping systems study located on a Thin Black Chernozemic clay loam near Three Hills, Alberta, Canada. Results showed that DSSAT-CSM often overestimated the drying of the surface layers in wheat rotations, but consistently overestimated soil moisture in the deep soil. This is likely due to the underestimation of root water extraction despite model predictions that the root system reached 80 cm. Among the eight growth/residue parameters simulated by DSSAT-CSM, root depth, leaf area index and residue thickness are the most influential characteristics on the simulation of soil moisture by SHAW. The SHAW model using DSSAT-CSM-simulated information significantly improved prediction of soil moisture at different depths and total soil water at 0-120 cm in all rotations with different phases compared with that simulated by DSSAT-CSM. Key words: Soil moisture, modeling, Decision Support System for Agrotechnology Transfer-Cropping System Model, Simultaneous Heat and Water Model


1988 ◽  
Vol 24 (1) ◽  
pp. 115-121 ◽  
Author(s):  
R. S. Verma ◽  
R. L. Yadav

SUMMARYIn sub-tropical India where 70% of the country's sugarcane is grown, companion cropping of wheat in autumn-planted sugarcane is beneficial. However, because the yield of sugarcane is reduced, farmers there are reluctant to adopt this cropping system in spite of the greater monetary gains compared with wheat-sugarcane sequential cropping. Application of 200 kg nitrogen ha−1 to sugarcane in two doses, two-thirds immediately after the wheat harvest and the remainder a month later, combined with irrigation at 75% available soil moisture during the summer months (April–June), produced cane yields similar to those from sole autumn-planted sugarcane, with an additional 4.8 t ha−1 of wheat.


1978 ◽  
Vol 18 (90) ◽  
pp. 112 ◽  
Author(s):  
ICR Holford ◽  
AD Doyle

The effects of varying durations of lucerne ley and subsequent wheat cropping on the moisture status of contrasting wheat growing soils are reported from two experiments in northern New South Wales. Lucerne leys of 5 1/2, 3 1/2 and 1 1/2 years on a red brown earth and 3 1/2, 2 1/2, and 1 1/2 years on a black earth were compared with a wheat-cowpea rotation, long fallow and continuous wheat. Lucerne extracted available soil water within eight months of sowing to a depth of 100 cm, with partial extraction of water to 150 cm. Within 18 months available water to a depth of 200 cm had been extracted. Subsequent growth of lucerne was dependent on incident rainfall and water extraction from depths greater than 200 cm. Wheat extracted water from the soil only to a depth of 150 cm, and extracted less water to this depth than did lucerne. Lucerne extracted water beyond the -1 5 bar suction level. On the black earth, soil moisture at 150 cm had not been recharged before time for sowing the third wheat crop, 28 months after lucerne plough-out. On the red brown earth, after a drought enforced long fallow immediately following lucerne plough-out, soil water at 200 cm was recharged within 18 months. Available soil moisture after three to five months fallow following plough-out of the lucerne leys was much less than for a wheat cropping system, with a consequent severe reduction in the grain yield of the following wheat crop. On the black earth grain yield was reduced by 7.7 kg ha-1 for each reduction of 1 mm in available moisture in the first crop after lucerne plough-out. Data indicate that lucerne must be ploughed out before January if a severe reduction in yield of the following wheat crop is to be minimized.


2015 ◽  
Vol 16 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Husayn El Sharif ◽  
Jingfeng Wang ◽  
Aris P. Georgakakos

Abstract Agricultural models, such as the Decision Support System for Agrotechnology Transfer cropping system model (DSSAT-CSM), have been developed for predicting crop yield at field and regional scales and to provide useful information for water resources management. A potentially valuable input to agricultural models is soil moisture. Presently, no observations of soil moisture exist covering the entire United States at adequate time (daily) and space (~10 km or less) resolutions desired for crop yield assessments. Data products from NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in modeling and forecasting crop yields and irrigation amount. A simple, efficient data assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is constrained to produce modeled crop yield and irrigation amounts that are consistent with SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data into the agricultural model provides an added benefit of reducing the uncertainty of modeled crop yields when the weather input data to the crop model are subject to large uncertainty.


2010 ◽  
Vol 149 (3) ◽  
pp. 297-304 ◽  
Author(s):  
X. TANG ◽  
X. SHI ◽  
Y. MA ◽  
X. HAO

SUMMARYLong-term (over 14 years) experiments on winter wheat (Triticum aestivum L.)–rice (Oryza sativa L.) crop rotations were conducted in Southwest China to investigate phosphorus (P) fertilizer utilization efficiency, including the partial factor productivity (PFP), agronomic efficiency (AE), internal efficiency (IE), partial P balance (PPB), recovery efficiency (RE) and the mass (input–output) balance. The seven treatments were Control, N, NP, NK, NPK, NPKM and NPKSt, representing various combinations of inorganic fertilizers (N, P and K), manure (M) and the application of rice straw (St). Without P application, the soil could supply c. 14·7–22·5 kg P/ha annually and produce, on average, c. 1·8 t/ha wheat and 6·0 t/ha rice. Phosphorus fertilization increased crop yields by 65·5 and 11·4% for wheat and rice, respectively, over the 14 years. The PFP values ranged from 80·2 to 177 kg grain/kg P fertilizer for wheat and from 222 to 255 kg/kg for rice in the NPK treatments. However, the mean AE over the 14-year period was 31·9 and 21·3 kg grain/kg inorganic P fertilizer for wheat and rice, respectively. The mean IE was 214 and 318 kg grain/kg P uptake for wheat and rice, respectively, during the cultivation period. The PPB for the whole rotation system over the 14 years ranged from 0·58 to 0·64. However, the mean RE of P fertilizer was 0·26 (varying from 0·22 to 0·29) in the wheat–rice cropping system over the 14-year period. For every 100 kg surplus P/ha per year, the concentration of soil P extracted by 0·5 m NaHCO3 at pH 8·5 (Olsen-P) would increase by, on average, 4·12 mg/kg in soil. For the wheat–rice cropping system, the current P application rate of 55–65 kg P/ha per year is able to sustain annual yields of about 3 t/ha for wheat and 7 t/ha for rice. This study suggests that, in order to achieve higher crop yields, the P fertilizer utilization efficiency should be considered when making P fertilizer recommendations in wheat–rice cropping systems.


Sign in / Sign up

Export Citation Format

Share Document