scholarly journals Comparison of the Values of a Novel Exolytic and Two Endolytic Alginate Lyases with Mannuronate Preference for Direct Preparation of Oligosaccharides, Action Modes, and Underlying Catalytic Mechanisms

Author(s):  
Lianghuan Zeng ◽  
Junge Li ◽  
Yuanyuan Cheng ◽  
Dandan Wang ◽  
Jingyan Gu ◽  
...  

Abstract Recent exploration of tool-like alginate lyases has focused on their oligosaccharide products and corresponding substrate action modes, and most were characterized as endolytic lyases with guluronate (G) preference. Herein, we elucidated a novel exolytic lyase, Aly-6, and two typical endolytic lyases, AlgL-Pae and AlgL-Avi, all with mannuronate (M) preferences. AlgL and heparinase_II_III modules play essential roles in determining the similar characteristics of these enzymes, although they are quite different in sequence characteristics. Aly-6 degraded substrates completely by continuously cleaving various monosaccharide units from nonreducing ends and producing various size-defined ΔG-terminated oligosaccharide fractions as intermediate alginate digests, which was inhibited by fluorescent labeling of reducing ends. Distinctly, AlgL-Pae and AlgL-Avi varied their action modes toward associated alginate substrates and therefore eventually degraded alginate into various size-defined oligosaccharide products with a specific structure-based succession rule. This study provided new insights into the action modes, associated mechanisms, and enzyme applications of M-preferred lyases.

2017 ◽  
Vol 83 (23) ◽  
Author(s):  
Yuanyuan Cheng ◽  
Dandan Wang ◽  
Jingyan Gu ◽  
Junge Li ◽  
Huihui Liu ◽  
...  

ABSTRACT Bifunctional alginate lyases can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G), but their substrate-degrading modes have not been thoroughly elucidated to date. In this study, we present Aly1 as a novel bifunctional endolytic alginate lyase of the genus Flammeovirga. The recombinant enzyme showed optimal activity at 50°C and pH 6.0. The enzyme produced unsaturated disaccharide (UDP2) and trisaccharide fractions as the final main alginate digests. Primary substrate preference tests and further structure identification of various size-defined final oligosaccharide products demonstrated that Aly1 is a bifunctional alginate lyase and prefers G to M. Tetrasaccharide-size fractions are the smallest substrates, and M, G, and UDP2 fractions are the minimal product types. Remarkably, Aly1 can vary its substrate-degrading modes in accordance with the terminus types, molecular sizes, and M/G contents of alginate substrates, producing a series of small size-defined saturated oligosaccharide products from the nonreducing ends of single or different saturated sugar chains and yielding unsaturated products in distinct but restricted patterns. The action mode changes can be partially inhibited by fluorescent labeling at the reducing ends of oligosaccharide substrates. Deletion of the noncatalytic region (NCR) of Aly1 caused weak changes of biochemical characteristics but increased the degradation proportions of small size-defined saturated M-enriched oligosaccharide substrates and unsaturated tetrasaccharide fractions without any size changes of degradable oligosaccharides, thereby enhancing the M preference and enzyme activity. Therefore, our results provided insight into the variable action mode of a novel bifunctional endolytic alginate lyase to inform accurate enzyme use. IMPORTANCE The elucidated endolytic alginate lyases usually degrade substrates into various size-defined unsaturated oligosaccharide products (≥UDP2), and exolytic enzymes yield primarily unsaturated monosaccharide products. However, it is poorly understood whether endolytic enzymes can produce monosaccharide product types when degrading alginate. In this study, we demonstrated that Aly1, a bifunctional alginate lyase of Flammeovirga sp. strain MY04, is endolytic and monosaccharide producing. Using various sugar chains as testing substrates, we also proved that key factors causing Aly1's action mode changes are the terminus types, molecular sizes, and M/G contents of substrates. Furthermore, the NCR fragment's effects on Aly1's biochemical characteristics and alginate-degrading modes and corresponding mechanisms were discovered by gene truncation and enzyme comparison. In summary, this study provides a novel bifunctional endolytic tool and a variable action mode for accurate use in alginate degradation.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 706
Author(s):  
Lianghuan Zeng ◽  
Junge Li ◽  
Yuanyuan Cheng ◽  
Dandan Wang ◽  
Jingyan Gu ◽  
...  

Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.


2015 ◽  
Vol 82 (1) ◽  
pp. 364-374 ◽  
Author(s):  
Wenjun Han ◽  
Jingyan Gu ◽  
Yuanyuan Cheng ◽  
Huihui Liu ◽  
Yuezhong Li ◽  
...  

ABSTRACTAlginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacteriumFlammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Fei Xu ◽  
Peng Wang ◽  
Yu-Zhong Zhang ◽  
Xiu-Lan Chen

ABSTRACT Alginate is a linear polysaccharide produced mainly by brown algae in marine environments. Alginate consists of a linear block copolymer made up of two monomeric units, β- d -mannuronate (M) and its C-5 epimer α- l -guluronate (G). Alginate lyases are polysaccharide lyases (PL) that degrade alginate via a β-elimination reaction. These enzymes play an important role in marine carbon recycling and also have widespread industrial applications. So far, more than 1,774 alginate lyase sequences have been identified and are distributed into 7 PL families. In this review, the folds, conformational changes during catalysis, and catalytic mechanisms of alginate lyases are described. Thus far, structures for 15 alginate lyases have been solved and are divided into 3 fold classes: the β-jelly roll class (PL7, -14, and -18), the (α/α)n toroid class (PL5, -15, and -17), and the β-helix fold (PL6). These enzymes adopt two different mechanisms for catalysis, and three kinds of conformational changes occur during this process. Moreover, common features in the structures, conformational changes, and catalytic mechanisms are summarized, providing a comprehensive understanding on alginate lyases.


Author(s):  
Fei Xu ◽  
Qian-Qian Cha ◽  
Yu-Zhong Zhang ◽  
Xiu-Lan Chen

Alginate, which is mainly produced by brown algae and decomposed by heterotrophic bacteria, is an important marine organic carbon source. The genus Pseudoalteromonas contains diverse forms of heterotrophic bacteria that are widely distributed in marine environments and are an important group in alginate degradation. In this review, the diversity of alginate-degrading Pseudoalteromonas is introduced and the character of Pseudoalteromonas alginate lyases, including their sequences, enzymatic properties, structures and catalytic mechanisms, and the synergistic effect of Pseudoalteromonas alginate lyases on alginate degradation are introduced. The acquisition of the alginate-degradation capacity and the alginate utilization pathways of Pseudoalteromonas are also introduced. This paper provides a comprehensive overview of alginate degradation by Pseudoalteromonas, which will contribute to the understanding of the degradation and recycling of marine algae polysaccharides driven by marine bacteria.


2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


Author(s):  
N. K. Voznesensky ◽  
S. V. Paramonova ◽  
A. L. Sedinin

The structure of psychovegetative status of underground miners is studied. The low level of attention in 64% of employees was revealed. 44% of the subjects had an average level of neuropsychic tension. Average level of personal anxiety (69%) and low level of situational anxiety (87%). The specific structure of psychovegetative status of underground miners is revealed.


2010 ◽  
Vol 36 (5) ◽  
pp. 794-800 ◽  
Author(s):  
Ai-Xia XU ◽  
Zhen HUANG ◽  
Chao-Zhi MA ◽  
En-Shi XIAO ◽  
Xiu-Sen ZHANG ◽  
...  

Author(s):  
Marc Antony Hullebus ◽  
Stephen Tobin ◽  
Adamantios Gafos

Sign in / Sign up

Export Citation Format

Share Document