Periodic Heat Stress Licenses EMSCs Differentiation Into Osteoblasts via YAP Signaling Pathway Activation

Author(s):  
wentao shi ◽  
zhe wang ◽  
Lu Bian ◽  
yiqing wu ◽  
huiya mei ◽  
...  

Abstract BackgroundThe repair and regeneration of large bone defects represent a highly challenging task for bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of the osteogenic differentiation of ectomesenchymal stem cells (EMSCs) is not well studied. Methods and resultsIn this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded in culture plates, followed by 1 h of heat stress at 41 °C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. ConclusionTogether, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eugene Lee ◽  
Ju-young Kim ◽  
Tae-Kyung Kim ◽  
Seo-Young Park ◽  
Gun-Il Im

AbstractWhile bone has an inherent capacity to heal itself, it is very difficult to reconstitute large bone defects. Regenerative medicine, including stem cell implantation, has been studied as a novel solution to treat these conditions. However, when the local vascularity is impaired, even the transplanted cells undergo rapid necrosis before differentiating into osteoblasts and regenerating bone. Thus, to increase the effectiveness of stem cell transplantation, it is quintessential to improve the viability of the implanted stem cells. In this study, given that the regulation of glucose may hold the key to stem cell survival and osteogenic differentiation, we investigated the molecules that can replace the effect of glucose under ischemic microenvironment of stem cell transplantation in large bone defects. By analyzing differentially expressed genes under glucose-supplemented and glucose-free conditions, we explored markers such as methyltransferase-like protein 7A (METTL7A) that are potentially related to cell survival and osteogenic differentiation. Overexpression of METTL7A gene enhanced the osteogenic differentiation and viability of human bone marrow stem cells (hBMSCs) in glucose-free conditions. When the in vivo effectiveness of METTL7A-transfected cells in bone regeneration was explored in a rat model of critical-size segmental long-bone defect, METTL7A-transfected hBMSCs showed significantly better regenerative potential than the control vector-transfected hBMSCs. DNA methylation profiles showed a large difference in methylation status of genes related to osteogenesis and cell survival between hBMSCs cultured in glucose-supplemented condition and those cultured in glucose-free condition. Interestingly, METTL7A overexpression altered the methylation status of related genes to favor osteogenic differentiation and cell survival. In conclusion, it is suggested that a novel factor METTL7A enhances osteogenic differentiation and viability of hBMSCs by regulating the methylation status of genes related to osteogenesis or survival.


2021 ◽  
Author(s):  
Ning Liu ◽  
Yongxin Sun

Aim: This study sets out to investigate the possible effects of miRNA-148a-3p (miR-148a-3p) on osteoblast differentiation and bone remodeling following osteoporosis. Materials & methods: Expression of miR-148a-3p, p300, Nrf2 and differentiation-related proteins (Runx2, Osteocalcin and Col1a1) was examined in the osteoblast MC3T3-E1 cell line, followed by identification of interaction between miR-148a-3p and p300 and between p300 and Nrf2. After ectopic expression and depletion experiments in MC3T3-E1 cells, cell proliferation, osteogenic mineralization and osteogenic differentiation were measured. Ovariectomy-induced osteoporosis mouse models were established to verify function of miR-148a-3p in vivo. Results: miR-148a-3p expression was restrained and p300 and Nrf2 expression was increased during osteoblast differentiation. miR-148a-3p inhibition or p300 upregulation enhanced proliferation and osteogenic differentiation in MC3T3-E1 cells. p300 was targeted by miR-148a-3p. Additionally, miR-148a-3p reduced BMD, bone volume relative to tissue volume ratio, trabecular bone, trabecular thickness and trabecular spacing in ovariectomy mice. Conclusion: Taken together, miR-148a-3p might prevent the osteoblast differentiation and bone remodeling by disrupting p300-dependent Nrf2 pathway activation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Noboru Matsumura ◽  
Kazuya Kaneda ◽  
Satoshi Oki ◽  
Hiroo Kimura ◽  
Taku Suzuki ◽  
...  

Abstract Background Significant bone defects are associated with poor clinical results after surgical stabilization in cases of glenohumeral instability. Although multiple factors are thought to adversely affect enlargement of bipolar bone loss and increased shoulder instability, these factors have not been sufficiently evaluated. The purpose of this study was to identify the factors related to greater bone defects and a higher number of instability episodes in patients with glenohumeral instability. Methods A total of 120 consecutive patients with symptomatic unilateral instability of the glenohumeral joint were retrospectively reviewed. Three-dimensional surface-rendered/registered models of bilateral glenoids and proximal humeri from computed tomography data were matched by software, and the volumes of bone defects identified in the glenoid and humeral head were assessed. After relationships between objective variables and explanatory variables were evaluated using bivariate analyses, factors related to large bone defects in the glenoid and humeral head and a high number of total instability episodes and self-irreducible dislocations greater than the respective 75th percentiles were evaluated using logistic regression analyses with significant variables on bivariate analyses. Results Larger humeral head defects (P < .001) and a higher number of total instability episodes (P = .032) were found to be factors related to large glenoid defects. On the other hand, male sex (P = .014), larger glenoid defects (P = .015), and larger number of self-irreducible dislocations (P = .027) were related to large humeral head bone defects. An increased number of total instability episodes was related to longer symptom duration (P = .001) and larger glenoid defects (P = .002), and an increased number of self-irreducible dislocations was related to larger humeral head defects (P = .007). Conclusions Whereas this study showed that bipolar lesions affect the amount of bone defects reciprocally, factors related to greater bone defects differed between the glenoid and the humeral head. Glenoid defects were related to the number of total instability episodes, whereas humeral head defects were related to the number of self-irreducible dislocations.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 759
Author(s):  
Xiaolan Huang ◽  
Rongmei Qu ◽  
Yan Peng ◽  
Yuchao Yang ◽  
Tingyu Fan ◽  
...  

Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3812
Author(s):  
Mai-Huong T. Ngo ◽  
Sue-Wei Peng ◽  
Yung-Che Kuo ◽  
Chun-Yen Lin ◽  
Ming-Heng Wu ◽  
...  

The role of a YAP-IGF-1R signaling loop in HCC resistance to sorafenib remains unknown. Method: Sorafenib-resistant cells were generated by treating naïve cells (HepG2215 and Hep3B) with sorafenib. Different cancer cell lines from databases were analyzed through the ONCOMINE web server. BIOSTORM–LIHC patient tissues (46 nonresponders and 21 responders to sorafenib) were used to compare YAP mRNA levels. The HepG2215_R-derived xenograft in SCID mice was used as an in vivo model. HCC tissues from a patient with sorafenib failure were used to examine differences in YAP and IGF-R signaling. Results: Positive associations exist among the levels of YAP, IGF-1R, and EMT markers in HCC tissues and the levels of these proteins increased with sorafenib failure, with a trend of tumor-margin distribution in vivo. Blocking YAP downregulated IGF-1R signaling-related proteins, while IGF-1/2 treatment enhanced the nuclear translocation of YAP in HCC cells through PI3K-mTOR regulation. The combination of YAP-specific inhibitor verteporfin (VP) and sorafenib effectively decreased cell viability in a synergistic manner, evidenced by the combination index (CI). Conclusion: A YAP-IGF-1R signaling loop may play a role in HCC sorafenib resistance and could provide novel potential targets for combination therapy with sorafenib to overcome drug resistance in HCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Hai Wang ◽  
Xiao Chang ◽  
Guixing Qiu ◽  
Fuzhai Cui ◽  
Xisheng Weng ◽  
...  

It still remains a major challenge to repair large bone defects in the orthopaedic surgery. In previous studies, a nanohydroxyapatite/collagen/poly(L-lactic acid) (nHAC/PLA) composite, similar to natural bone in both composition and structure, has been prepared. It could repair small sized bone defects, but they were restricted to repair a large defect due to the lack of oxygen and nutrition supply for cell survival without vascularization. The aim of the present study was to investigate whether nHAC/PLA composites could be vascularized in vivo. Composites were implanted intramuscularly in the groins of rabbits for 2, 6, or 10 weeks (n=5×3). After removing, the macroscopic results showed that there were lots of rich blood supply tissues embracing the composites, and the volumes of tissue were increasing as time goes on. In microscopic views, blood vessels and vascular sprouts could be observed, and microvessel density (MVD) of the composites trended to increase over time. It suggested that nHAC/PLA composites could be well vascularized by implanting in vivo. In the future, it would be possible to generate vascular pedicle bone substitutes with nHAC/PLA composites for grafting.


2017 ◽  
Vol 39 (4) ◽  
pp. 907-917 ◽  
Author(s):  
Christoph Nau ◽  
Dirk Henrich ◽  
Caroline Seebach ◽  
Katrin Schröder ◽  
John H. Barker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document