scholarly journals Multiple freeze-thaw cycles lead to a loss of consistency in poly(A)-enriched RNA sequencing

2020 ◽  
Author(s):  
Benjamin Kellman ◽  
Hratch Baghdassarian ◽  
Tiziano Pramparo ◽  
Isaac Shamie ◽  
Vahid Gazestani ◽  
...  

Abstract Background: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging.Results: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3’ shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation.Conclusion: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.

2021 ◽  
Author(s):  
Benjamin Kellman ◽  
Hratch Baghdassarian ◽  
Tiziano Pramparo ◽  
Isaac Shamie ◽  
Vahid Gazestani ◽  
...  

Abstract Background: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging.Results: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3’ shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation.Conclusion: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Benjamin P. Kellman ◽  
Hratch M. Baghdassarian ◽  
Tiziano Pramparo ◽  
Isaac Shamie ◽  
Vahid Gazestani ◽  
...  

Abstract Background Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. Results Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3′ shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. Conclusion The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility. Graphical abstract


2020 ◽  
Author(s):  
Benjamin Kellman ◽  
Hratch Baghdassarian ◽  
Tiziano Pramparo ◽  
Isaac Shamie ◽  
Vahid Gazestani ◽  
...  

Abstract RNA-Seq is ubiquitous, but depending on the study, sub-optimal sample handling may be required, resulting in repeated freeze-thaw cycles. However, little is known about how each cycle impacts downstream analyses, due to a lack of study and known limitations in common RNA quality metrics, e.g., RIN, at quantifying RNA degradation following repeated freeze-thaws. Here we quantify the impact of repeated freeze-thaw on the reliability of RNA-Seq. To do so, we developed a method to estimate the relative noise between technical replicates independently of RIN. Using this approach we inferred the effect of both RIN and the number of freeze-thaw cycles on sample noise. We find that RIN is unable to fully account for the change in sample noise due to freeze-thaw cycles. Additionally, freeze-thaw is detrimental to sample quality and differential expression (DE) reproducibility, approaching zero after three cycles for poly(A)-enriched samples, wherein the inherent 3’ bias in read coverage is more exacerbated by freeze-thaw cycles, while ribosome-depleted samples are less affected by freeze-thaws. The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.


2020 ◽  
Author(s):  
Benjamin P. Kellman ◽  
Hratch M. Baghdassarian ◽  
Tiziano Pramparo ◽  
Isaac Shamie ◽  
Vahid Gazestani ◽  
...  

AbstractRNA-Seq is ubiquitous, but depending on the study, sub-optimal sample handling may be required, resulting in repeated freeze-thaw cycles. However, little is known about how each cycle impacts downstream analyses, due to a lack of study and known limitations in common RNA quality metrics, e.g., RIN, at quantifying RNA degradation following repeated freeze-thaws. Here we quantify the impact of repeated freeze-thaw on the reliability of downstream RNA-Seq analysis. To do so, we developed a method to estimate the relative noise between technical replicates independently of RIN. Using this approach we inferred the effect of both RIN and the number of freeze-thaw cycles on sample noise. We find that RIN is unable to fully account for the change in sample noise due to freeze-thaw cycles. Additionally, freeze-thaw is detrimental to sample quality and differential expression (DE) reproducibility, approaching zero after three cycles for poly(A)-enriched samples, wherein the inherent 3’ bias in read coverage is more exacerbated by freeze-thaw cycles, while ribosome-depleted samples are less affected by freeze-thaws. The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Beate Vieth ◽  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Wolfgang Enard ◽  
Ines Hellmann

Abstract The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not yet been established. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ~3000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.


2019 ◽  
Author(s):  
Beate Vieth ◽  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Wolfgang Enard ◽  
Ines Hellmann

AbstractThe recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not been established, yet. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ∼ 3,000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Milda Mickutė ◽  
Kotryna Kvederavičiūtė ◽  
Aleksandr Osipenko ◽  
Raminta Mineikaitė ◽  
Saulius Klimašauskas ◽  
...  

Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.


2020 ◽  
Vol 100 (10) ◽  
pp. 1345-1355 ◽  
Author(s):  
Stefaniya Boneva ◽  
Anja Schlecht ◽  
Daniel Böhringer ◽  
Hans Mittelviefhaus ◽  
Thomas Reinhard ◽  
...  

Abstract This study aims to compare the potential of standard RNA-sequencing (RNA-Seq) and 3′ massive analysis of c-DNA ends (MACE) RNA-sequencing for the analysis of fresh tissue and describes transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) archival human samples by MACE. To compare MACE to standard RNA-Seq on fresh tissue, four healthy conjunctiva from four subjects were collected during vitreoretinal surgery, halved and immediately transferred to RNA lysis buffer without prior fixation and then processed for either standard RNA-Seq or MACE RNA-Seq analysis. To assess the impact of FFPE preparation on MACE, a third part was fixed in formalin and processed for paraffin embedding, and its transcriptional profile was compared with the unfixed specimens analyzed by MACE. To investigate the impact of FFPE storage time on MACE results, 24 FFPE-treated conjunctival samples from 24 patients were analyzed as well. Nineteen thousand six hundred fifty-nine transcribed genes were detected by both MACE and standard RNA-Seq on fresh tissue, while 3251 and 2213 transcripts were identified explicitly by MACE or RNA-Seq, respectively. Standard RNA-Seq tended to yield longer detected transcripts more often than MACE technology despite normalization, indicating that the MACE technology is less susceptible to a length bias. FFPE processing revealed negligible effects on MACE sequencing results. Several quality-control measurements showed that long-term storage in paraffin did not decrease the diversity of MACE libraries. We noted a nonlinear relation between storage time and the number of raw reads with an accelerated decrease within the first 1000 days in paraffin, while the numbers remained relatively stable in older samples. Interestingly, the number of transcribed genes detected was independent on FFPE storage time. RNA of sufficient quality and quantity can be extracted from FFPE samples to obtain comprehensive transcriptome profiling using MACE technology. We thus present MACE as a novel opportunity for utilizing FFPE samples stored in histological archives.


2020 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Anna R. Dahlgren ◽  
Erica Y. Scott ◽  
Tamer Mansour ◽  
Erin N. Hales ◽  
Pablo J. Ross ◽  
...  

Long non-coding RNAs (lncRNAs) are untranslated regulatory transcripts longer than 200 nucleotides that can play a role in transcriptional, post-translational, and epigenetic regulation. Traditionally, RNA-sequencing (RNA-seq) libraries have been created by isolating transcriptomic RNA via poly-A+ selection. In the past 10 years, methods to perform ribosomal RNA (rRNA) depletion of total RNA have been developed as an alternative, aiming for better coverage of whole transcriptomic RNA, both polyadenylated and non-polyadenylated transcripts. The purpose of this study was to determine which library preparation method is optimal for lncRNA investigations in the horse. Using liver and cerebral parietal lobe tissues from two healthy Thoroughbred mares, RNA-seq libraries were prepared using standard poly-A+ selection and rRNA-depletion methods. Averaging the two biologic replicates, poly-A+ selection yielded 327 and 773 more unique lncRNA transcripts for liver and parietal lobe, respectively. More lncRNA were found to be unique to poly-A+ selected libraries, and rRNA-depletion identified small nucleolar RNA (snoRNA) to have a higher relative expression than in the poly-A+ selected libraries. Overall, poly-A+ selection provides a more thorough identification of total lncRNA in equine tissues while rRNA-depletion may allow for easier detection of snoRNAs.


2017 ◽  
Vol 114 (27) ◽  
pp. 7130-7135 ◽  
Author(s):  
Andrew E. Jaffe ◽  
Ran Tao ◽  
Alexis L. Norris ◽  
Marc Kealhofer ◽  
Abhinav Nellore ◽  
...  

RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method—quality surrogate variable analysis (qSVA)—as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3×) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.


Sign in / Sign up

Export Citation Format

Share Document