scholarly journals Investigate the Double Peaks in Main Emission of UVB LEDs

Author(s):  
Tsung-Yen Liu ◽  
Shih-Ming Huang ◽  
Mu-Jen Lai ◽  
Rui-Sen Liu ◽  
Chieh-Hsiung Kuan ◽  
...  

Abstract In this study we suppressed the parasitic emission caused by electron overflow found in typical UVB light-emitting diodes (LEDs). Furthermore, modulation of the p-layer structure and doping profile allowed us to decrease the relaxation time of the holes to reach conditions of quasi-charge neutrality in the UVB quantum well. Our UVB LED (sample A) exhibited a clear exciton emission, with its peak near 306 nm and a band-to-band emission at 303 nm. The relative intensity of the exciton emission of sample A decreased as a result of a thermal energy effect. At temperatures of up to 363 K, sample A displayed the exciton emission. Our corresponding UVC LED (sample B) exhibited only a Gaussian peak emission at a wavelength of approximately 272 nm.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6699
Author(s):  
Shih-Ming Huang ◽  
Mu-Jen Lai ◽  
Rui-Sen Liu ◽  
Tsung-Yen Liu ◽  
Ray-Ming Lin

In this study, we suppressed the parasitic emission caused by electron overflow found in typical ultraviolet B (UVB) and ultraviolet C (UVC) light-emitting diodes (LEDs). The modulation of the p-layer structure and aluminum composition as well as a trade-off in the structure to ensure strain compensation allowed us to increase the p-AlGaN doping efficiency and hole numbers in the p-neutral region. This approach led to greater matching of the electron and hole numbers in the UVB and UVC emission quantum wells. Our UVB LED (sample A) exhibited clear exciton emission, with its peak near 306 nm, and a band-to-band emission at 303 nm. The relative intensity of the exciton emission of sample A decreased as a result of the thermal energy effect of the temperature increase. Nevertheless, sample A displayed its exciton emission at temperatures of up to 368 K. In contrast, our corresponding UVC LED (sample B) only exhibited a Gaussian peak emission at a wavelength of approximately 272 nm.


2011 ◽  
Vol 8 (7-8) ◽  
pp. 2072-2074 ◽  
Author(s):  
Richard Gutt ◽  
Klaus Köhler ◽  
Joachim Wiegert ◽  
Lutz Kirste ◽  
Thorsten Passow ◽  
...  

2004 ◽  
Author(s):  
Thilo Stephan ◽  
Klaus Koehler ◽  
Manfred Maier ◽  
Michael Kunzer ◽  
Peter Schlotter ◽  
...  

2002 ◽  
Vol 81 (5) ◽  
pp. 801-802 ◽  
Author(s):  
A. Yasan ◽  
R. McClintock ◽  
K. Mayes ◽  
S. R. Darvish ◽  
P. Kung ◽  
...  

NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050159
Author(s):  
Yi Gong ◽  
Yanbing Han ◽  
Fang Zhang ◽  
Mingyue Zhai ◽  
Xing Chen ◽  
...  

In this work, carbon nanodots (CNDs) were synthesized from extract of mango leaves. Sphere nanodots were formed rapidly by one-step microwave heating. The photoluminescence (PL) of the CNDs was found greatly dependent on the reaction temperature. The emission peak position of the CNDs changed from 550[Formula: see text]nm to 430[Formula: see text]nm when the heating temperature increased from 120[Formula: see text]C to 150[Formula: see text]C. Particularly, the CNDs synthesized at 130[Formula: see text]C showed multi-band emission at 411[Formula: see text]nm, 480[Formula: see text]nm and 530[Formula: see text]nm, providing emitting color from blue to yellow. Moreover, the free chlorophyll molecules in the solution added red fluorescence at 670[Formula: see text]nm, and the integrated emitting color of the CNDs solution was close to white. Coated on a commercial 365[Formula: see text]nm light-emitting diode (LED) chip, the CNDs showed greenish white light with CIE coordinates of (0.37, 0.44). This work provided a one-pot, rapid and green method to obtain multi-emissive CNDs toward white LEDs.


2018 ◽  
Vol 3 (10) ◽  
pp. 2573-2586 ◽  
Author(s):  
Mu-Huai Fang ◽  
Julius L. Leaño ◽  
Ru-Shi Liu

2017 ◽  
Vol 35 (2) ◽  
pp. 295-309 ◽  
Author(s):  
Haiyang Gao ◽  
Gordon G. Shepherd ◽  
Yuanhe Tang ◽  
Lingbing Bu ◽  
Zhen Wang

Abstract. Double-layer structures in polar mesospheric clouds (PMCs) are observed by using Solar Occultation for Ice Experiment (SOFIE) data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH) and Southern Hemisphere (SH) respectively. Double-layer PMCs almost always have less mean ice water content (IWC) than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs') potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.


Sign in / Sign up

Export Citation Format

Share Document