scholarly journals Strain Compensation and Trade-Off Design Result in Exciton Emission at 306 nm from AlGaN LEDs at Temperatures up to 368 K

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6699
Author(s):  
Shih-Ming Huang ◽  
Mu-Jen Lai ◽  
Rui-Sen Liu ◽  
Tsung-Yen Liu ◽  
Ray-Ming Lin

In this study, we suppressed the parasitic emission caused by electron overflow found in typical ultraviolet B (UVB) and ultraviolet C (UVC) light-emitting diodes (LEDs). The modulation of the p-layer structure and aluminum composition as well as a trade-off in the structure to ensure strain compensation allowed us to increase the p-AlGaN doping efficiency and hole numbers in the p-neutral region. This approach led to greater matching of the electron and hole numbers in the UVB and UVC emission quantum wells. Our UVB LED (sample A) exhibited clear exciton emission, with its peak near 306 nm, and a band-to-band emission at 303 nm. The relative intensity of the exciton emission of sample A decreased as a result of the thermal energy effect of the temperature increase. Nevertheless, sample A displayed its exciton emission at temperatures of up to 368 K. In contrast, our corresponding UVC LED (sample B) only exhibited a Gaussian peak emission at a wavelength of approximately 272 nm.

2021 ◽  
Author(s):  
Tsung-Yen Liu ◽  
Shih-Ming Huang ◽  
Mu-Jen Lai ◽  
Rui-Sen Liu ◽  
Chieh-Hsiung Kuan ◽  
...  

Abstract In this study we suppressed the parasitic emission caused by electron overflow found in typical UVB light-emitting diodes (LEDs). Furthermore, modulation of the p-layer structure and doping profile allowed us to decrease the relaxation time of the holes to reach conditions of quasi-charge neutrality in the UVB quantum well. Our UVB LED (sample A) exhibited a clear exciton emission, with its peak near 306 nm and a band-to-band emission at 303 nm. The relative intensity of the exciton emission of sample A decreased as a result of a thermal energy effect. At temperatures of up to 363 K, sample A displayed the exciton emission. Our corresponding UVC LED (sample B) exhibited only a Gaussian peak emission at a wavelength of approximately 272 nm.


2021 ◽  
Vol 118 (18) ◽  
pp. 182102
Author(s):  
Xiaoyu Zhao ◽  
Bin Tang ◽  
Liyan Gong ◽  
Junchun Bai ◽  
Jiafeng Ping ◽  
...  

2019 ◽  
Vol 75 (1) ◽  
pp. 80-86
Author(s):  
Hyung-Joo Lee ◽  
Jin-Su So ◽  
Hong-Gun Kim ◽  
Lee-Ku Kwac ◽  
Won-Chan An

2008 ◽  
Vol 1 ◽  
pp. 021101 ◽  
Author(s):  
Lai Wang ◽  
Jiaxing Wang ◽  
Hongtao Li ◽  
Guangyi Xi ◽  
Yang Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document