scholarly journals Terminal Groups Dependent Near-Field Enhancement Effect of Ti3C2Tx Nanosheets

2020 ◽  
Author(s):  
Ying-Ying Yang ◽  
Wen-Tao Zhou ◽  
Wei-Long Song ◽  
Qing-Quan Zhu ◽  
Hao-Jiang Xiong ◽  
...  

Abstract Both multilayered (ML) and few-layered (FL) Ti3C2Tx nanosheets with different dominant terminal groups have been prepared through a typical etching and delaminating procedure. Various characterizations confirm that the physical and chemical performance of the nanosheets are dependent on the dominant functional groups. It has been demonstrated that ML-Ti3C2Tx has been mainly terminated by O-related groups, which result in better oxidation resistance and stronger near-field enhancement effect. As for FL-Ti3C2Tx, which is mainly terminated by hydroxyl groups, it can be better dispersed in aqueous solution and could confine stronger near-field after coupling to Ag nanostructures by electron injection.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ying-Ying Yang ◽  
Wen-Tao Zhou ◽  
Wei-Long Song ◽  
Qing-Quan Zhu ◽  
Hao-Jiang Xiong ◽  
...  

AbstractBoth multilayered (ML) and few-layered (FL) Ti3C2Tx nanosheets have been prepared through a typical etching and delaminating procedure. Various characterizations confirm that the dominant terminal groups on ML-Ti3C2Tx and FL-Ti3C2Tx are different, which have been assigned to O-related and hydroxyl groups, respectively. Such deviation of the dominant terminals results in the different physical and chemical performance and eventually makes the nanosheets have different potential applications. In particular, before coupling to Ag nanoparticles, ML-Ti3C2Tx can present stronger near-field enhancement effect; however, Ag/FL-Ti3C2Tx hybrid structure can confine stronger near-field due to the electron injection, which can be offered by the terminated hydroxyl groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Yatsui ◽  
Felix Brandenburg ◽  
Benjamin Leuschel ◽  
Olivier Soppera

AbstractBy using gold (Au) nanoparticles (NPs) as an optical near-field source under far-field illumination in combination with a silver (Ag) ion solution containing a photoinitiator, we coated Ag on Au NPs using a near-field (NF)-assisted process. We evaluated the change in the size of the NPs using transmission electron microscopy. Evaluation of the synthesized Ag volume over illumination power confirmed the squared power dependence of the NP volume with illumination using 808 nm light, i.e., a wavelength longer than the absorption edge wavelength of the photoinitiator molecules. The rate of volume increase was much lower than the plasmonic field enhancement effect. Therefore, the squared power dependency of the volume increase using a wavelength longer than the absorption edge wavelength originated from NF-assisted second-harmonic generation and the resulting excitation.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 487
Author(s):  
Ibrahim Halil Öner ◽  
Christin David ◽  
Christine Joy Querebillo ◽  
Inez M. Weidinger ◽  
Khoa Hoang Ly

We present a facile approach for the determination of the electromagnetic field enhancement of nanostructured TiN electrodes. As model system, TiN with partially collapsed nanotube structure obtained from nitridation of TiO2 nanotube arrays was used. Using surface-enhanced Raman scattering (SERS) spectroscopy, the electromagnetic field enhancement factors (EFs) of the substrate across the optical region were determined. The non-surface binding SERS reporter group azidobenzene was chosen, for which contributions from the chemical enhancement effect can be minimized. Derived EFs correlated with the electronic absorption profile and reached 3.9 at 786 nm excitation. Near-field enhancement and far-field absorption simulated with rigorous coupled wave analysis showed good agreement with the experimental observations. The major optical activity of TiN was concluded to originate from collective localized plasmonic modes at ca. 700 nm arising from the specific nanostructure.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 56677-56685 ◽  
Author(s):  
Lijun Yang ◽  
Jianlei Cui ◽  
Yang Wang ◽  
Chaojian Hou ◽  
Hui Xie ◽  
...  

The carbon nanotubes interconnection can be achieved by the new nanospot welding method with the near-field enhancement effect of the metallic AFM probe tip irradiated by optical fiber probe laser.


2004 ◽  
Vol 13 (03n04) ◽  
pp. 593-599 ◽  
Author(s):  
SATOSHI KAWATA ◽  
TARO ICHIMURA ◽  
NORIHIKO HAYAZAWA ◽  
YASUSHI INOUYE ◽  
MAMORU HASHIMOTO

We apply the field enhancement effect due to plasmon polariton excitation on a metallic nanostructure in order to improve the diffraction limited spatial resolution of coherent anti-Stokes Raman scattering (CARS) microscopy. A cantilever probe tip coated with a 25 nm-thick gold film is utilized as a near-field light source to locally excite the CARS polarizations near the tip. Our CARS microscope has effectively enhanced the CARS signals and realized vibrational imaging of single-wall carbon nanotubes (SWNTs) beyond the spatial resolution of far-field CARS microscopy.


2021 ◽  
Vol 13 (15) ◽  
pp. 8147
Author(s):  
Sasiwimol Khawkomol ◽  
Rattikan Neamchan ◽  
Thunchanok Thongsamer ◽  
Soydoa Vinitnantharat ◽  
Boonma Panpradit ◽  
...  

A horizontal drum kiln is a traditional method widely used in Southeast Asian countries for producing biochar. An understanding of temperature conditions in the kiln and its influence on biochar properties is crucial for identifying suitable biochar applications. In this study, four agricultural residues (corncob, coconut husk, coconut shell, and rice straw) were used for drum kiln biochar production. The agricultural residues were turned into biochar within 100–200 min, depending on their structures. The suitability of biochar for briquette fuels was analyzed using proximate, ultimate, and elemental analysis. The biochar’s physical and chemical properties were characterized via bulk density, iodine number, pHpzc, SEM, and FTIR measurements. All biochars had low O/C and H/C ratios and negative charge from both carbonyl and hydroxyl groups. Coconut husk and shell biochar had desirable properties such as high heating value and a high amount of surface functional groups which can interact with nutrients in soil. These biochars are thus suitable for use for a variety of purposes including as biofuels, adsorbents, and as soil amendments.


Sign in / Sign up

Export Citation Format

Share Document