In Situ Corn Fiber Conversion for Ethanol Improvement by The Addition of Novel Lignocellulolytic Enzyme Cocktail

2020 ◽  
Author(s):  
Le Gao ◽  
Shulin Chen ◽  
Dongyuan Zhang

Abstract Background: The technology of converting corn mashes to ethanol has been mature, but corn mashes has high-viscosity and high-sugar characteristics which hindered cellulose utilization and yeast-fermentation efficiency. The excessive viscosity of corn mash is caused by the presence of non-starch polysaccharides, such as cellulose in cereal grains. Corn kernel fiber (mostly cellulose) is typically unconverted in the process. Results: A novel lignocellulolytic enzymes cocktail with strong substrate specificity was prepared for high-viscosity, high-sugar corn mash. The in situ conversion of corn mashes with novel lignocellulolytic enzymes at the optimum cellulase dosage of 50 FPU/L resulted in 12.4%, 12.0%, 11.8%, and 12.9% increased ethanol concentration compared with the reference mash at 0.3, 1, 5, and 70 L batch-fermentation scales, respectively. The highest yield of ethanol from corn mash digested with the prepared novel lignocellulolytic enzyme reached 117.0 ± 0.1g/L at the 70 L batch fermentation, which was a 12.9% increase in ethanol yield. Adding the lignocellulolytic enzymes caused the greatest decrease in viscosity of corn mash by 40.9% compared with the reference mash (33.5 ± 1.5 Pa·s), whereas the residual sugars decreased by 56.3%. Simultaneously, the application of novel lignocellulolytic enzymes increased the value of dried distiller’s grain with solubles by increasing the protein content and decreasing the residual cellulose and starch content.Conclusion: The application of novel lignocellulolytic enzymes significantly improved the alcohol concentration, productivity, and yield. With the same amount of material, the application of the novel enzymes cocktail can enhance the ethanol yield by more than 10%. The in situ conversion of cellulose promoted the release of contents, including starch and protein, which can decrease the fermentation broth viscosity and improve the rheological property, thereby improving the ethanol yield. Thus, this technology can increase the net revenue of fuel-ethanol industrialization and promote the technological progress of renewable energy.

2019 ◽  
Vol 21 (5) ◽  
pp. 1080-1090 ◽  
Author(s):  
Xiujuan Li ◽  
Zhaoxian Xu ◽  
Jianming Yu ◽  
He Huang ◽  
Mingjie Jin

The in situ pretreatment and in situ conversion of corn fiber increased cellulose conversion and the overall ethanol yield.


2018 ◽  
Vol 113 ◽  
pp. 217-224 ◽  
Author(s):  
Xiujuan Li ◽  
Sitong Chen ◽  
He Huang ◽  
Mingjie Jin

2021 ◽  
Vol 169 ◽  
pp. 113653
Author(s):  
Xiujuan Li ◽  
Qiang Xiong ◽  
Minghui Wang ◽  
He Huang ◽  
Guojun Yue ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Pratik Prashant Pawar ◽  
Annamma Anil Odaneth ◽  
Rajeshkumar Natwarlal Vadgama ◽  
Arvind Mallinath Lali

Abstract Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (Heff/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.


2017 ◽  
Vol 266 ◽  
pp. 172-176
Author(s):  
Pattarawadee Maijan ◽  
Nitinart Saetung ◽  
Wisut Kaewsakul

Mixing behaviors of the compounds filled with different reinforcing fillers were studied in correlation with compound and vulcanizate properties. Four filler systems were used including: 1) silica plus small amount of silane coupling agent; 2) carbon black; 3) pre-modified silica; and 4) silica+silane-carbon black mixed one. The results have shown that silica provides longer optimum cure time and shorter cure rate than carbon black due to accelerator adsorption on silica surface. In addition, owing to highly polar nature on silica surface the silica-based compounds show rather high viscosity, attributed to stronger filler-filler interaction as can be confirmed by Payne effect and reinforcement index. However, the commercial surface treatment or pre-modified form of silica shows superior properties than in-situ modification of silica by silane during mixing, while it gives comparable properties to carbon black-based compound. Tensile properties of vulcanizates show a good correlation with the basic properties of their compounds.


2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


1991 ◽  
Vol 11 (4) ◽  
pp. 353-358 ◽  
Author(s):  
W. D. Einicke ◽  
B. Gläser ◽  
R. Schöoullner

Sign in / Sign up

Export Citation Format

Share Document