scholarly journals Nature Restoration Shifts the Abundance and Structure of Soil Nematode Communities in Subtropical China

Author(s):  
Jianqing Wang ◽  
Yingfeng Zheng ◽  
Xiuzhen Shi ◽  
Shu Kee Lam ◽  
Manuel Esteban Lucas-Borja ◽  
...  

Abstract Aims Soil nematode community is an important component of the soil food web, which has been widely recognized as a key bio-indicator for assessing the influence of nature restoration on ecological functions. However, the dynamics of the abundance, diversity and function of soil nematode community remain unclear under different forest succession phases. Methods The soil nematode community of natural secondary forests was investigated using a chronosequence approach. Nature restoration for five succession stages were sampled in this study to represent a wide range of stand age groups.Results Soil nematode abundance gradually increased with forest stand age, which reached a peak value (574 individuals 100 g-1 dry soil) in the older age classes. In contrast, soil nematode diversity was not affected by forest stand age. Soil available nitrogen and phosphorus were key factors influencing soil nematode abundance and diversity during forest secondary succession. The plant parasite index decreased with forest stand age, which indicated that ecosystem function and health would be improved as nature restoration progresses. In addition, the structure of soil nematode community was more sensitive to forest secondary succession compared to plant community and soil microbial community. The bottom-up effects of the plant and microbial communities on soil nematode community were important drivers of nematode community structure in subtropical forests. Conclusions Overall, this study demonstrates the active responses of soil nematode community to nature restoration, and highlights the importance of the above-ground and below-ground interactions to the soil food web.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Na Huo ◽  
Shiwei Zhao ◽  
Jinghua Huang ◽  
Dezhou Geng ◽  
Nan Wang ◽  
...  

The bottom-up effects of vegetation have been documented to be strong drivers of the soil food web structure and functioning in temperate forests. However, how the forest type affects the stability of the soil food web is not well known. In the Ziwuling forest region of the Loess Plateau, we selected three typical forests, Pinus tabuliformis Carrière (PT), Betula platyphylla Sukaczev (BP), and Quercus liaotungensis Koidz. (QL), to investigate the soil nematode community characteristics in the dry (April) and rainy (August) season, and analyzed their relationships with the soil properties. The results showed that the characteristics of the soil nematode communities and their seasonal variations differed markedly among the forest types. Compared to P. tabuliformis (PT), the B. platyphylla (BP) and Q. liaotungensis (QL) forests had higher plant diversity and more easily decomposed litters, which were more effective for improving the soil resource availability, thus, leading to more beneficial effects on the soil nematode community. In both the dry and rainy season, the soil nematode abundance was the highest in the BP forest. The Shannon–Wiener diversity index (H’), Pielou’s evenness index (J’), and nematode channel ratio index (NCR) were higher, while the Simpson dominance index (λ) and plant parasite index (PPI) were lower, in the BP and QL forests compared with in the PT forest. From the dry to rainy season, the total nematode abundance and the abundance of fungivores, bacterivores, and omnivore-predators, significantly increased in the QL and PT forests, and the values of the Wasilewska index (WI), maturity index (MI), H’, J’, λ, and NCR showed the most significant seasonal variability in the PT forest, which were mainly driven by changes in the soil labile C and N and the moisture content between the two seasons. Generally, the seasonal stability of the soil nematode communities was the highest in the BP forest and the poorest in the PT forest, probably due to variations in the plant diversity. Our results suggest the importance of tree species and diversity as bottom-up regulating factors of the soil food web structure, function, and seasonal stability, which has important implications for sustainable forest management in the Loess Plateau and other temperate regions.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Dan Zhao ◽  
Yao Wang ◽  
Ling Wen ◽  
Hongyun Qu ◽  
Zuobiao Zhang ◽  
...  

It is well known that crop monoculture can induce negative effects on soil ecosystems and crop productivity. However, little is known about how vegetable monoculture affects the soil nematode community structure and its relationship with vegetable yields. In this study, the composition, abundance, metabolic footprint, and ecological indices of soil nematodes are investigated in monocultures of pumpkin and melon. The relationships between nematode community structure and yields of pumpkin and melon were analyzed by linear regression. Both monoculture soils of pumpkin and melon suppressed the relative abundance of bacterivores but increased the relative abundance of plant parasites. Pumpkin monoculture soils decreased soil nematode diversity but increased the maturity index of plant parasites. Monoculture soils of pumpkin and melon decreased the metabolic footprint of lower- and higher-level trophic groups of the soil food web, respectively. Pumpkin and melon monoculture soils increased the food web indices channel index (CI) but decreased the enrichment index (EI) and the structure index (SI). The monoculture soils of pumpkin and melon led to a more fungal-dominated decomposition pathway and degraded soil food web conditions. The abundance of bacterivores and food web indices EI and SI were positively correlated with soil nutrients and pH, while the abundance of plant parasites and CI were negatively correlated with soil nutrients and pH. Paratylenchus was negatively correlated with pumpkin and melon yields and could be the potential plant parasites threatening pumpkin and melon productions. Redundancy analysis showed that monocultures of pumpkin and melon altered the soil nematode community via soil properties; total N, total P, alkeline-N, and pH were the main driving factors.


Author(s):  
Dale Akbar Yogaswara ◽  
Hikmat Kasmara ◽  
Wawan Hermawan

Soil biota is very diverse and contributes widely to ecosystem services that are important in the sustainable function of natural and managed ecosystems. Knowing the condition of the soil food web through the communities that inhabit it is necessary to assess the productivity of the soil. Nematode communities in the soil food web can be used as indicators because of their high abundance, and they inhabit various trophic levels, and participate in several important processes in the soil. The soil food web condition from three locations (Agr1, Agr2, Agr3) through the nematode functional index was evaluated using the maturity index (MI), the maturity index 2-5 (MI-25), the plant-parasitic index (PPI), the channel index (CI), the enrichment index (EI), the structure index (SI), and the basal index (BI). Nematode diversity was evaluated using Simpson’s index of diversity, dominance, and evenness. The MI and MI2-5 scores indicated that Agr3 (3.81) had an undisturbed food web, while Agr2 (2.88 and 3.0) and Agr1 (2.5 and 2.51) were in a moderate condition with minor disturbances. Fauna profile analysis using SI and EI shows that Agr3 and Agr1 had an undisturbed soil food web, and Agr2 was in enriched conditions. CI results found that Agr1 and Agr3 had a fungal decomposition pathway while Agr2 had a bacterial decomposition pathway. We concluded from this research, that prospect of the nematode community to serve as a collection of biological indicator data in assessing soil or ecosystem health can be considered in further research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahid Afzal ◽  
Humira Nesar ◽  
Zarrin Imran ◽  
Wasim Ahmad

AbstractDespite enormous diversity, abundance and their role in ecosystem processes, little is known about how community structures of soil-inhabiting nematodes differ across elevation gradient. For this, soil nematode communities were investigated along an elevation gradient of 1000–2500 masl across a temperate vegetation in Banihal-Pass of Pir-Panjal mountain range. We aimed to determine how the elevation gradient affect the nematode community structure, diversity and contribution to belowground carbon assimilation in the form of metabolic footprint. Our results showed that total nematode abundance and the abundance of different trophic groups (fungivores, herbivores and omnivores) declined with the increase of elevation. Shannon index, generic richness and evenness index indicated that nematode communities were more diverse at lower elevations and declined significantly with increase in elevation. Nematode community showed a pattern of decline in overall metabolic footprint with the increase of elevation. Nematode abundance and diversity proved to be more sensitive to elevation induced changes as more abundant and diverse nematode assemblage are supported at lower elevations. Overall it appears nematode abundance, diversity and contribution to belowground carbon cycling is stronger at lower elevations and gradually keep declining towards higher elevations under temperate vegetation cover in Banihal-pass of Pir-Panjal mountain range.


2011 ◽  
Vol 48 (2) ◽  
pp. 116-123 ◽  
Author(s):  
W. Zhang ◽  
Y. Xiao ◽  
X. Wang ◽  
Y. Lv

AbstractDiversity and nematode abundance were investigated in soils collected around the Gangue hill of Fushun West open-pit mine to evaluate soil pollution, due to heavy metals contents, using nematodes as bioindicators. Nematodes were collected from soil samples using elutriate-sievingflotation and centrifugation methods. The species richness and ecological indices were analyzed. On the base of chemical and nematological analysis, the results indicated that the area around the Gangue hill of Fushun West Openpit mine was polluted by heavy metal, but the degree of pollution was not very serious. According to the results obtained from single-factor analysis, cadmium soil content was ten times higher than the background; 29 genera of nematodes were identified and Acrobeloides, Cervidellus and Mesorhabtidis were the dominant genera in almost all sampling sites. The dominant genera were different as the distances to the Gangue hill changed. In particular, in the investigated areas bacterivores and plant-parasites nematodes were more diffuse than fungivores and omnivorepredators. Copper soil content was significantly correlated with plant parasitic trophic group and with total number of nematodes, thus suggesting that nematode communities studies are important scientific basis for understanding the healthy development of soil ecosystem.


Sign in / Sign up

Export Citation Format

Share Document