scholarly journals Using Nematode Community to Evaluate Banana Soil Food Web in Mekargalih, Cianjur, West Java

Author(s):  
Dale Akbar Yogaswara ◽  
Hikmat Kasmara ◽  
Wawan Hermawan

Soil biota is very diverse and contributes widely to ecosystem services that are important in the sustainable function of natural and managed ecosystems. Knowing the condition of the soil food web through the communities that inhabit it is necessary to assess the productivity of the soil. Nematode communities in the soil food web can be used as indicators because of their high abundance, and they inhabit various trophic levels, and participate in several important processes in the soil. The soil food web condition from three locations (Agr1, Agr2, Agr3) through the nematode functional index was evaluated using the maturity index (MI), the maturity index 2-5 (MI-25), the plant-parasitic index (PPI), the channel index (CI), the enrichment index (EI), the structure index (SI), and the basal index (BI). Nematode diversity was evaluated using Simpson’s index of diversity, dominance, and evenness. The MI and MI2-5 scores indicated that Agr3 (3.81) had an undisturbed food web, while Agr2 (2.88 and 3.0) and Agr1 (2.5 and 2.51) were in a moderate condition with minor disturbances. Fauna profile analysis using SI and EI shows that Agr3 and Agr1 had an undisturbed soil food web, and Agr2 was in enriched conditions. CI results found that Agr1 and Agr3 had a fungal decomposition pathway while Agr2 had a bacterial decomposition pathway. We concluded from this research, that prospect of the nematode community to serve as a collection of biological indicator data in assessing soil or ecosystem health can be considered in further research.

2021 ◽  
Author(s):  
Jianqing Wang ◽  
Yingfeng Zheng ◽  
Xiuzhen Shi ◽  
Shu Kee Lam ◽  
Manuel Esteban Lucas-Borja ◽  
...  

Abstract Aims Soil nematode community is an important component of the soil food web, which has been widely recognized as a key bio-indicator for assessing the influence of nature restoration on ecological functions. However, the dynamics of the abundance, diversity and function of soil nematode community remain unclear under different forest succession phases. Methods The soil nematode community of natural secondary forests was investigated using a chronosequence approach. Nature restoration for five succession stages were sampled in this study to represent a wide range of stand age groups.Results Soil nematode abundance gradually increased with forest stand age, which reached a peak value (574 individuals 100 g-1 dry soil) in the older age classes. In contrast, soil nematode diversity was not affected by forest stand age. Soil available nitrogen and phosphorus were key factors influencing soil nematode abundance and diversity during forest secondary succession. The plant parasite index decreased with forest stand age, which indicated that ecosystem function and health would be improved as nature restoration progresses. In addition, the structure of soil nematode community was more sensitive to forest secondary succession compared to plant community and soil microbial community. The bottom-up effects of the plant and microbial communities on soil nematode community were important drivers of nematode community structure in subtropical forests. Conclusions Overall, this study demonstrates the active responses of soil nematode community to nature restoration, and highlights the importance of the above-ground and below-ground interactions to the soil food web.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Dan Zhao ◽  
Yao Wang ◽  
Ling Wen ◽  
Hongyun Qu ◽  
Zuobiao Zhang ◽  
...  

It is well known that crop monoculture can induce negative effects on soil ecosystems and crop productivity. However, little is known about how vegetable monoculture affects the soil nematode community structure and its relationship with vegetable yields. In this study, the composition, abundance, metabolic footprint, and ecological indices of soil nematodes are investigated in monocultures of pumpkin and melon. The relationships between nematode community structure and yields of pumpkin and melon were analyzed by linear regression. Both monoculture soils of pumpkin and melon suppressed the relative abundance of bacterivores but increased the relative abundance of plant parasites. Pumpkin monoculture soils decreased soil nematode diversity but increased the maturity index of plant parasites. Monoculture soils of pumpkin and melon decreased the metabolic footprint of lower- and higher-level trophic groups of the soil food web, respectively. Pumpkin and melon monoculture soils increased the food web indices channel index (CI) but decreased the enrichment index (EI) and the structure index (SI). The monoculture soils of pumpkin and melon led to a more fungal-dominated decomposition pathway and degraded soil food web conditions. The abundance of bacterivores and food web indices EI and SI were positively correlated with soil nutrients and pH, while the abundance of plant parasites and CI were negatively correlated with soil nutrients and pH. Paratylenchus was negatively correlated with pumpkin and melon yields and could be the potential plant parasites threatening pumpkin and melon productions. Redundancy analysis showed that monocultures of pumpkin and melon altered the soil nematode community via soil properties; total N, total P, alkeline-N, and pH were the main driving factors.


SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 199-210 ◽  
Author(s):  
E. Ashley Shaw ◽  
Karolien Denef ◽  
Cecilia Milano de Tomasel ◽  
M. Francesca Cotrufo ◽  
Diana H. Wall

Abstract. Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not only does fire affect the soil community and root decomposition, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that annual burning increases root-litter-derived C flow through the soil food web of the tallgrass prairie.


2016 ◽  
Vol 60 ◽  
pp. 310-316 ◽  
Author(s):  
Jie Zhao ◽  
Dejun Li ◽  
Shenglei Fu ◽  
Xunyang He ◽  
Zhiyong Fu ◽  
...  

2015 ◽  
Vol 52 (1) ◽  
pp. 41-49
Author(s):  
A. Čerevková ◽  
L Cagáň

Summary The aim of this study was to determine the effects of Bt maize hybrid cultivation on soil nematode communities in two field trials, as well as to analyse other factors (fertilisation and moisture) responsible for the community structure of soil nematodes. Nematode communities were studied in maize plots at the locality of Borovce in western Slovakia. During 2012 and 2013, hybrids DK440 and DKC3871 (conventional) or DKC4442YG and DKC3872YG (Bt maize, event MON810) were sown in 10 repetitions each. Nematodes were extracted from soil samples collected at the maize flowering (July 11, 2012 and July 30, 2013). Altogether, 39 nematode species belonged to 35 genera were identified in two maize variants. The dominant taxa in both variants were Acrobeloides nanus, Ce-phalobus persegnis, Aphelenchoides composticola, Aphelenchus avenae, Eudorylaimus carteri and Filenchus vulgaris. Calculation of the maturity index, plant parasitic index, enrichment index and structure index did not confirm any clear influence of year or hybrid type on soil nematode communities. The proportional representation of cp-1, cp-2 and cp-3-5 groups of nematode fauna indicated conditions of low stability and high stress. Faunal profiles representing the structure and enrichment conditions of the soil food web showed an environment with a high C:N ratio and high levels of fungal feeders. Based on the calculation of the metabolic footprint of nematodes in the soil food web, a difference between the isoline maize variant and Bt maize variant in 2012 was found, but this difference was not readily apparent in 2013. The occurrence of nematodes, their abundance, proportion of feeding types and selected ecological indices did not depend on the type of maize hybrid (Bt or non-Bt). Thus, the cultivation of genetically modified maize did not directly influence nematode populations. The application of fertiliser at certain periods does not influence the nematode community. The observed significant higher abundance of nematodes was correlated with soil moisture.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dagang Song ◽  
Akash Tariq ◽  
Kaiwen Pan ◽  
Wenkai Chen ◽  
Aiping Zhang ◽  
...  

Abstract Agricultural management techniques such as mulching with crop straw can impact soil properties and may in turn change the structure and function of the soil food web. We investigated different straw mulching types and straw mulching coverage levels on soil nematodes community structure in walnut orchards. We set up a randomized experimental design with three straw mulch types, and three straw mulch distance treatments in a walnut plantation. The results indicated that the number of soil nematodes after straw mulching was lower than that found in the control (CK). However, the metabolic and structure footprints of the omnivore-predator nematodes showed higher values as compared to CK. The abundances of plant parasite and omnivore-predator nematodes were negatively correlated with ammonium nitrogen (NH4+–N) and dissolved organic nitrogen (DON), whereas soil moisture content (SM) had a negative correlation with the abundance of total nematodes. High structure index (SI), maturity index (MI) and low enrichment index (EI) values revealed a structured soil food web, medium soil enrichment, and fungal decomposition channel under the mix straw mulching treatments. Soil nematodes should be used as an indicator of soil functional changes resulting from straw mulching.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Na Huo ◽  
Shiwei Zhao ◽  
Jinghua Huang ◽  
Dezhou Geng ◽  
Nan Wang ◽  
...  

The bottom-up effects of vegetation have been documented to be strong drivers of the soil food web structure and functioning in temperate forests. However, how the forest type affects the stability of the soil food web is not well known. In the Ziwuling forest region of the Loess Plateau, we selected three typical forests, Pinus tabuliformis Carrière (PT), Betula platyphylla Sukaczev (BP), and Quercus liaotungensis Koidz. (QL), to investigate the soil nematode community characteristics in the dry (April) and rainy (August) season, and analyzed their relationships with the soil properties. The results showed that the characteristics of the soil nematode communities and their seasonal variations differed markedly among the forest types. Compared to P. tabuliformis (PT), the B. platyphylla (BP) and Q. liaotungensis (QL) forests had higher plant diversity and more easily decomposed litters, which were more effective for improving the soil resource availability, thus, leading to more beneficial effects on the soil nematode community. In both the dry and rainy season, the soil nematode abundance was the highest in the BP forest. The Shannon–Wiener diversity index (H’), Pielou’s evenness index (J’), and nematode channel ratio index (NCR) were higher, while the Simpson dominance index (λ) and plant parasite index (PPI) were lower, in the BP and QL forests compared with in the PT forest. From the dry to rainy season, the total nematode abundance and the abundance of fungivores, bacterivores, and omnivore-predators, significantly increased in the QL and PT forests, and the values of the Wasilewska index (WI), maturity index (MI), H’, J’, λ, and NCR showed the most significant seasonal variability in the PT forest, which were mainly driven by changes in the soil labile C and N and the moisture content between the two seasons. Generally, the seasonal stability of the soil nematode communities was the highest in the BP forest and the poorest in the PT forest, probably due to variations in the plant diversity. Our results suggest the importance of tree species and diversity as bottom-up regulating factors of the soil food web structure, function, and seasonal stability, which has important implications for sustainable forest management in the Loess Plateau and other temperate regions.


Oikos ◽  
2004 ◽  
Vol 106 (3) ◽  
pp. 576-586 ◽  
Author(s):  
Gerlinde B. De Deyn ◽  
Ciska E. Raaijmakers ◽  
Jasper van Ruijven ◽  
Frank Berendse ◽  
Wim H. van der Putten

Sign in / Sign up

Export Citation Format

Share Document