scholarly journals Hypoxic Tumour Cell-derived Exosomal miR-340-5p Promotes Radioresistance of Oesophageal Squamous Cell Carcinoma via KLF10

2020 ◽  
Author(s):  
Fangyu Chen ◽  
Bing Xu ◽  
Jie Li ◽  
Xi Yang ◽  
Junjie Gu ◽  
...  

Abstract Background: Radiotherapy resistance is a major obstacle in the treatment of oesophageal squamous cell carcinoma (OSCC). Hypoxia is a critical cause of radioresistance. However, the communications between hypoxic cells and aerobic cells via exosomes during radiation resistance remain unclear. Methods: We previously detected miR-340-5p is highly expressed in hypoxic OSCC exosomes by RNA-seq. The effects and mechanisms of hypoxic EVs and miR-340-5p on radiosensitivity were evaluated by qPCR, western blot IHC, flow cytometry, TUNEL assay, etc. Tumour xenografts and clinical samples were used for evaluating radiosensitivity and dissecting underlying mechanisms. Results: Hypoxic exosomes can alleviate radiation induced apoptosis and accelerate DNA damage repair. miR-340-5p is highly expressed in hypoxic exosomes and causes radioresistance. Knockdown miR-340-5p in hypoxic EVs reversed whose radioresistant effect, indicating miR-340-5p is critical for hypoxic EV-induced radioresistance. KLF10 is the direct target of miR-340-5p. Moreover, metformin was found to increase the expression of KLF10 and enhance radiosensitivity of OSCC. And higher levels of miR-340-5p in the plasma exosomes of OSCC patients are related to poor radiotherapy response and prognosis. Conclusions: Hypoxic tumour cell-derived exosomal miR-340-5p confers radioresistance in OSCC by targeting KLF10/UVRAG, suggesting that miR-340-5p could be a potential biomarker and therapeutic target for the enhancement of radiosensitivity in OSCC. Combined use of metformin and radiotherapy might benefit OSCC patients.

2020 ◽  
Author(s):  
Fangyu Chen ◽  
Bing Xu ◽  
Jie Li ◽  
Xi Yang ◽  
Junjie Gu ◽  
...  

Abstract Background: Radiotherapy resistance is a major obstacle in the treatment of oesophageal squamous cell carcinoma (OSCC). Hypoxia is a critical cause of radioresistance. However, the communication between hypoxic cells and aerobic cells via exosomes during the transfer of radiation resistance remains unclear. Methods: Exo-miR-340-5p levels were analysed by RNA-seq and qRT-PCR. We co-cultured OSCC cells with isolated normoxic and hypoxic exosomes to study their impact on radiosensitivity. We used a specific exo-miR-340-5p mimic and knock-down retrovirus to explore the role of this miRNA in the transfer of radioresistance from hypoxic to normoxic cells. Dual-luciferase reporter and RIP assays were used to verify KLF10 as a putative target of miR-340-5p. Several in vitro assays were conducted and xenograft models were established to investigate the effect of exo-miR-340-5p on OSCC radiosensitivity. The plasma exo-miR-340-5p levels in OSCC patients were analysed to study the clinical value of this parameter.Results: Hypoxic exosomes alleviated radiation-induced apoptosis and accelerated DNA damage repair. miR-340-5p was highly expressed in hypoxic exosomes and was transferred into normoxic cells, where it induced radioresistance. Overexpression of miR-340-5p in normoxic OSCC cells mimicked the radioresistance of cells co-cultured with hypoxic exosomes. Knockdown of miR-340-5p in hypoxic exosomes reversed the radioresistance effect, indicating that exo-miR-340-5p is critical for hypoxic EV-transferred radioresistance. KLF10 was identified as the direct target of miR-340-5p. Moreover, metformin was found to increase the expression of KLF10 and enhance the radiosensitivity of OSCC. Higher levels of miR-340-5p in the plasma exosomes from OSCC patients are related to a poorer radiotherapy response and prognosis. Conclusions: Hypoxic tumour cell-derived exosomal miR-340-5p confers radioresistance in OSCC by targeting KLF10/UVRAG, suggesting that miR-340-5p could be a potential biomarker and therapeutic target for the enhancement of radiosensitivity in OSCC. Metformin can increase KLF10 expression, which ameliorates the radioresistance induced by exo-miR-340-5p transfer. Therefore, metformin could be further investigated as a therapeutic option for the treatment of OSCC.


2021 ◽  
Author(s):  
Fangyu Chen ◽  
Bing Xu ◽  
Jie Li ◽  
Xi Yang ◽  
Junjie Gu ◽  
...  

Abstract Background: Radiotherapy resistance is a major obstacle in the treatment of oesophageal squamous cell carcinoma (OSCC). Hypoxia is a critical cause of radioresistance. However, the communication between hypoxic cells and aerobic cells via exosomes during the transfer of radiation resistance remains unclear. Methods: Exo-miR-340-5p levels were analysed by RNA-seq and qRT-PCR. We co-cultured OSCC cells with isolated normoxic and hypoxic exosomes to study their impact on radiosensitivity. We used a specific exo-miR-340-5p mimic and knock-down retrovirus to explore the role of this miRNA in the transfer of radioresistance from hypoxic to normoxic cells. Dual-luciferase reporter and RIP assays were used to verify KLF10 as a putative target of miR-340-5p. Several in vitro assays were conducted and xenograft models were established to investigate the effect of exo-miR-340-5p on OSCC radiosensitivity. The plasma exo-miR-340-5p levels in OSCC patients were analysed to study the clinical value of this parameter.Results: Hypoxic exosomes alleviated radiation-induced apoptosis and accelerated DNA damage repair. miR-340-5p was highly expressed in hypoxic exosomes and was transferred into normoxic cells, where it induced radioresistance. Overexpression of miR-340-5p in normoxic OSCC cells mimicked the radioresistance of cells co-cultured with hypoxic exosomes. Knockdown of miR-340-5p in hypoxic exosomes reversed the radioresistance effect, indicating that exo-miR-340-5p is critical for hypoxic EV-transferred radioresistance. KLF10 was identified as the direct target of miR-340-5p. Moreover, metformin was found to increase the expression of KLF10 and enhance the radiosensitivity of OSCC. Higher levels of miR-340-5p in the plasma exosomes from OSCC patients are related to a poorer radiotherapy response and prognosis. Conclusions: Hypoxic tumour cell-derived exosomal miR-340-5p confers radioresistance in OSCC by targeting KLF10/UVRAG, suggesting that miR-340-5p could be a potential biomarker and therapeutic target for the enhancement of radiosensitivity in OSCC. Metformin can increase KLF10 expression, which ameliorates the radioresistance induced by exo-miR-340-5p transfer. Therefore, metformin could be further investigated as a therapeutic option for the treatment of OSCC.


Author(s):  
Fangyu Chen ◽  
Bing Xu ◽  
Jie Li ◽  
Xi Yang ◽  
Junjie Gu ◽  
...  

Abstract Background Radiotherapy resistance is a major obstacle in the treatment of oesophageal squamous cell carcinoma (OSCC). Hypoxia is a critical cause of radioresistance. However, the communication between hypoxic cells and aerobic cells via exosomes during the transfer of radiation resistance remains unclear. Methods Exo-miR-340-5p levels were analysed by RNA-seq and qRT-PCR. We co-cultured OSCC cells with isolated normoxic and hypoxic exosomes to study their impact on radiosensitivity. We used a specific exo-miR-340-5p mimic and knock-down retrovirus to explore the role of this miRNA in the transfer of radioresistance from hypoxic to normoxic cells. Dual-luciferase reporter and RIP assays were used to verify KLF10 as a putative target of miR-340-5p. Several in vitro assays were conducted and xenograft models were established to investigate the effect of exo-miR-340-5p on OSCC radiosensitivity. The plasma exo-miR-340-5p levels in OSCC patients were analysed to study the clinical value of this parameter. Results Hypoxic exosomes alleviated radiation-induced apoptosis and accelerated DNA damage repair. miR-340-5p was highly expressed in hypoxic exosomes and was transferred into normoxic cells, where it induced radioresistance. Overexpression of miR-340-5p in normoxic OSCC cells mimicked the radioresistance of cells co-cultured with hypoxic exosomes. Knockdown of miR-340-5p in hypoxic exosomes reversed the radioresistance effect, indicating that exo-miR-340-5p is critical for hypoxic EV-transferred radioresistance. KLF10 was identified as the direct target of miR-340-5p. Moreover, metformin was found to increase the expression of KLF10 and enhance the radiosensitivity of OSCC. Higher levels of miR-340-5p in the plasma exosomes from OSCC patients are related to a poorer radiotherapy response and prognosis. Conclusions Hypoxic tumour cell-derived exosomal miR-340-5p confers radioresistance in OSCC by targeting KLF10/UVRAG, suggesting that miR-340-5p could be a potential biomarker and therapeutic target for the enhancement of radiosensitivity in OSCC. Metformin can increase KLF10 expression, which ameliorates the radioresistance induced by exo-miR-340-5p transfer. Therefore, metformin could be further investigated as a therapeutic option for the treatment of OSCC.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Wang ◽  
Shuhong An ◽  
Diyi Wang ◽  
Haizhen Ji ◽  
Xingjing Guo ◽  
...  

A previous study showed that a downexpression of protease-activated receptor 4 (PAR4) is associated with the development of esophageal squamous cell carcinoma (ESCC). In this study, we explored the relationship between PAR4 activation and the expression of p16, and elucidated the underlying mechanisms in PAR4 inducing the tumor suppressor role in ESCC. ESCC cell lines (EC109 and TE-1) were treated with PAR4-activating peptide (PAR4-AP). Immunohistochemistry for DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) was performed in 26 cases of ESCC tissues. We found that DNMT1 and HDAC2 immunoreactivities in ESCC were significantly higher than those in adjacent noncancerous tissues. PAR4 activation could suppress DNMT1 and HDAC2, as well as increase p16 expressions, whereas silencing PAR4 dramatically increased HDAC2 and DNMT1, as well as reduced p16 expressions. Importantly, the chromatin immunoprecipitation-PCR (ChIP-PCR) data indicated that treatment of ESCC cells with PAR4-AP remarkably suppressed DNMT1 and HDAC2 enrichments on the p16 promoter. Furthermore, we demonstrated that activation of PAR4 resulted in an increase of p38/ERK phosphorylation and activators for p38/ERK enhanced the effect of PAR4 activation on HDAC2, DNMT1, and p16 expressions, whereas p38/ERK inhibitors reversed these effects. Moreover, we found that activation of PAR4 in ESCC cells significantly inhibited cell proliferation and induced apoptosis. These findings suggest that PAR4 plays a potential tumor suppressor role in ESCC cells and represents a potential therapeutic target of this disease.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yuqing Duan ◽  
Yunlong Jia ◽  
Jiali Wang ◽  
Tianxu Liu ◽  
Zishuo Cheng ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.


2019 ◽  
Vol 17 (4) ◽  
pp. 463-469
Author(s):  
Hou Deqiang ◽  
Gao Yufeng ◽  
Bai Ning ◽  
Dong Yu

Isoliquiritigenin is a flavonoid commonly found in liquorice and has been identified as a potent anti-tumor agent. The aim of this study was to investigate whether isoliquiritigenin regulates the proliferation and apoptosis of tongue squamous cell carcinoma cells by regulating forkhead box G1 expression via miR-21. MTT assay and flow cytometry were used to analyze cell proliferation and apoptosis, respectively. Quantitative real time polymerase chain reaction and western blotting were used to detect mRNA and protein expression levels, respectively. The relationship between miR-21 and forkhead box G1 was detected by dual luciferase assay. Isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells, and decreased miR-21 levels and promoted forkhead box G1 expression. Forkhead box G1 was then identified as a target of miR-21 and ISL could promote forkhead box G1 expression by inhibiting miR-21. Further analysis suggested that upregulation of miR-21 improved proliferation and suppressed apoptosis of tongue squamous cell carcinoma cells by inhibiting forkhead box G1 expression. Finally, our results revealed that isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells by regulating miR-21. Isoliquiritigenin might act as a novel therapeutic treatment for tongue squamous cell carcinoma cells through up-regulation of forkhead box G1 expression via inhibiting miR-21expression.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


Sign in / Sign up

Export Citation Format

Share Document