scholarly journals Anhydrous Topical Ointment for Management of Infected Wounds

Author(s):  
Rajashekharayya A. Sanguramath ◽  
Boaz Laadan ◽  
Ariel Franco

Abstract Optimal prevention of microbial infection at the wound site is a priority clinical consideration required to facilitate normal healing process. Topical antimicrobials are commonly used for treatment and prevention of local wound infections. Herein, an anhydrous, hydrophilic, non-greasy, and non-occlusive antimicrobial ointment was formulated by incorporating two main active ingredients, CuO(1−x)ZnOx and (±)-α-bisabolol. CuO(1−x)ZnOx nanocomposite was added to provide a broad-spectrum antimicrobial activity through the release of reactive oxygen species. (±)-α-Bisbolol was added to expedite the wound healing process. Prepared ointment showed very high killing efficacy against a spectrum of bacteria ( ̴6Log reduction) and a pathogenic yeast ( ̴5Log reduction) within 2h of exposure. Results described here would be of great benefit to professionals as wells as for personal use in treating infected wounds.

2021 ◽  
Author(s):  
Rajashekharayya A. Sanguramath ◽  
Boaz Laadan ◽  
Ariel Franco

Abstract Optimal prevention of microbial infection at the wound site is a priority clinical consideration required to facilitate normal healing process. Topical antimicrobials are commonly used for treatment and prevention of local wound infections. Herein, an anhydrous, hydrophilic, non-greasy, and non-occlusive antimicrobial ointment was formulated by incorporating two main active ingredients, CuO(1−x)ZnOx and (±)-α-bisabolol. CuO(1−x)ZnOx nanocomposite was added to provide a broad-spectrum antimicrobial activity through the release of reactive oxygen species. (±)-α-Bisbolol was added to expedite the wound healing process. Prepared ointment showed very high killing efficacy against a spectrum of bacteria ( ̴6Log reduction) and a pathogenic yeast ( ̴5Log reduction) within 2h of exposure. Results described here would be of great benefit to professionals as wells as for personal use in treating infected wounds.


2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


2021 ◽  
Vol 26 (Sup9) ◽  
pp. S26-S36
Author(s):  
Luxmi Dhoonmoon ◽  
Hayley Turner-Dobbin ◽  
Karen Staines

Wound infection is an important complicating factor in the wound healing process, and infections can be even more complex and difficult to manage in the case of wounds with biofilms. Silver has been used to treat infected wounds for a long time now, and the strength of the product depends on the number of Ag ions, where the greater the number of ions, the higher and faster the reactivity is. Ag Oxysalts technology—used in 3M Kerracontact Ag dressing—has three times more ions than standard silver dressings. The technology also does not show the typical disadvantages of silver, such as cytotoxicity and systemic toxicity. This article discusses the use of Ag Oxysalts technology for infected wounds and presents case studies to support the efficacy of this product in promoting wound healing.


2019 ◽  
Vol 34 (8) ◽  
pp. 1171-1187
Author(s):  
Farnoush Oveissi ◽  
Naser Tavakoli ◽  
Mohsen Minaiyan ◽  
Mohammad Reza Mofid ◽  
Azade Taheri

Epidermal lipoxygenase enzyme extracted from Ambystoma mexicanum (AmbLOXe) is known to accelerate the wound-healing process. AmbLOXe as a protein suffers from inactivation and losing its activity during formulation. Therefore, a delivery system that protects AmbLOXe from inactivation and preserves its activity is needed. We prepared AmbLOXe-loaded pectin nanoparticles (AmbLOXe Pec-NPs) and placed them into an alginate hydrogel. AmbLOXe Pec-NPs incorporation into the alginate hydrogel provides a means for controlled and sustained delivery of AmbLOXe to the wound site. Furthermore, the suitable swelling behavior and mechanical properties of AmbLOXe Pec-NPs alginate hydrogel make it feasible for clinical use. AmbLOXe Pec-NPs alginate hydrogel significantly enhanced the wound-healing process on the rat full-thickness excisional wounds, increased the rate of wound closure, enhanced the re-epithelialization and decreased the incidence of abnormal scarring. AmbLOXe Pec-NPs alginate hydrogel can be proposed as an effective wound hydrogel for improving wound healing with minimal scarring.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Shuainan Zhu ◽  
Ying Yu ◽  
Yun Ren ◽  
Liying Xu ◽  
Huilin Wang ◽  
...  

AbstractDelayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Sunny Wangko

Abstract: Chronic wound is still a world-wide problem that spends a very high cost related to its management and treatment. Although there are a lot of promising studies about wound healing process, the prevalence and incidence of chronic wound and its complications are still high. Conventionally, the management of chronic wound consists of surgical debridement, manual irrigation, dressing, and antimicrobial therapy (topical and/or systemic). It is accepted that microbial biofilm and its complexity play important roles in non-healing wounds. This biofilm consists of polymicrobial colonies embedded in exopolymeric matrix produced by the biofilm itself and has a high tolerance to host defence mechanisme, antibiotics, and antiseptics. Larval therapy has been approved by FDA to be used in chronic wound management. It has antimicrobial effects besides its other effects on wound healing inter alia mechanical debridement, anti-inflammation, angiogenesis, and destabilization of biofilm enzymes. Further studies are needed to explore the effects of larval therapy, especially its excretion/secretion components, so that it can be applicated more aesthetically.Keywords: chronic wound, wound healing process, biofilm, larval therapyAbstrak: Luka kronis merupakan masalah kesehatan di seluruh dunia yang telah memboroskan biaya cukup tinggi. Walaupun telah terjadi kemajuan dan pemahaman mengenai penyembuhan luka, prevalensi dan insidensi luka kronis dan komplikasinya tetap meningkat pesat. Secara konvensional, perawatan luka kronis terdiri dari debrideman, irigasi manual, dressing untuk mempertahankan kelembaban, dan terapi antimikroba (topikal dan atau sistemik). Adanya biofilm mikroba serta kompleksitasnya pada luka kronis telah disepakati sebagai salah satu kunci gagalnya penyembuhan luka. Biofilm mikroba terdiri dari koloni-koloni mikroorganisme polimikrobial terkemas dalam matriks eksopolimerik yang diproduksi olehnya sendiri dan memiliki toleransi tinggi terhadap pertahanan pejamu (host), antibiotik, dan antiseptik. Terapi larva telah diterima oleh FDA dan telah terbukti berefek antimikroba disamping efek lainnya terhadap penyembuhan luka, antara lain: debrideman mekanis, anti-inflamasi, angiogenesis, dan destabilisasi enzim biofilm pada luka. Studi lanjut diperlukan untuk mengeksplorasi efek terapi larva terutama komponen ekskresi/skresi larva terhadap penyembuhan luka agar dapat diaplikasikan secara lebih estetik.Kata kunci: luka kronis, penyembuhan luka, biofilm, terapi larva


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Sunny Wangko

Abstract: The usage of larvae in wound treatment has been known across the centuries in different countries. However, larval therapy is offered when the conventional therapy has failed in the management of chronic, infected wounds. Concerning the larval therapy, it was presumed that the wound healing was due to the mechanical debridement effect of the larval movement and of their hooks. To date, a variety of study reports reveals that there are several beneficial effects of the larval therapy, inter alia: secretion/excretion of larvae contains enzymes, growth factors, and cytokines that collaborate in the wound healing process. The bioactive molecules in the secretion/excretion of the larvae has to be further studied and to be developed, therefore, they can be applied in the wound management efficiently and economically. Keywords: larval therapy, chronic wound, healing process.     Abstrak: Walaupun pemanfaatan larva pada luka kronis telah sangat lama dikenal di berbagai negara, terapi larva umumnya digunakan bila terapi konvensional telah gagal. Awalnya diduga bahwa efek debridemen mekanis oleh gerakan larva dan kaitnya yang paling berperan. Dewasa ini, laporan berbagi studi telah mengungkapkan bahwa larva menyekresi dan menyintesis berbagai bahan baik berupa enzim, sitokin, dan growth factors yang turut berperan dalam proses penyembuhan luka. Adanya molekul bioaktif dalam ekskresi dan sekresi larva perlu diteliti dan dikembangkan agar dapat diaplikasikan dengan lebih efisien dan ekonomis. Kata kunci: terapi larva, luka kronis, penyembuhan luka.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 154
Author(s):  
Yen-An Lin ◽  
Pei-Yi Chu ◽  
Wen-Lung Ma ◽  
Wei-Chung Cheng ◽  
Shu-Ting Chan ◽  
...  

Surgical wounds are common injuries of skin and tissues and usually become a clinical problem. Until now, various synthetic and natural peptides have been widely explored as potential drug candidates for wound healing. Inhibition of the TNF-α signaling pathway and promotion of angiogenesis are suggested to be involved in their effects. Angiogenesis at the wound site is one of the essential requisites for rapid healing. In the present study, a novel peptide extract derived from the natural source Lates calcarifer, commonly known as sea bass or barramundi, was evaluated for its wound healing property. The specific acidic and enzymatic approaches were employed for producing sea bass extract containing small size peptides (molecular weight ranging from 1 kD to 5 kD). The cytotoxicity of the extract was examined in HaCaT and NIH3T3. After this, the effects of enzyme digested peptide extracts of sea bass on wound healing in mice were investigated. The peptide extracts (660 and 1320 mg/kg/day) and control protein (1320 mg/kg/day) was orally given to the wounded mice, respectively, for 12 days. The surgical method was improved by implanting a silicone ring at the wound site. The ring avoided the contracting effect in murine wounds, making it more closely related to a clinical condition. The results showed promising improvement at the wound site in mice. Sea bass peptide extracts accelerated the wound healing process and enhanced the microvessel formation at the wound site. The remarkable effects of this novel sea bass peptide extract in healing traumatic injuries revealed a new option for developing wound management.


2003 ◽  
Vol 18 (2) ◽  
pp. 97-101
Author(s):  
Teresa Neuma de Souza Brito ◽  
Luiz Reginaldo Menezes da Rocha ◽  
Carlos André Nunes Jatobá ◽  
Maurício Pereira Sales ◽  
Aldo da Cunha Medeiros

Fibronectin (FN), a large family of plasma and extracellular matrix glycoproteins, plays an important role in wound healing. PURPOSE: To evaluate the effect of fibronectin on the healing of sutured duodenal wounds, correlating with the serum and tissue level of the substance. METHODS: An experimental study was done in 30 adult Wistar rats divided into two group. In the control group (n=15) a duodenal suture was treated with saline solution 0,9% and in the test group the duodenal wounds were treated with 1% FN. The duodenal wound healing process was studied in the 5th, 7tn and 10th postoperative days, by histological sections stained by hematoxylin-eosin, Masson trichromic and immunohistochemical reaction for FN. A digital histological grading system was used to obtain a score for each group and to observe the healing process. RESULTS: the FN was present in the several layers of the duodenum and the cellular and plasmatic FN increased with the evolution of healing. In the test group the FN enhanced the wound healing within 5, 7 and 10 days after injury, when compared with the control group. CONCLUSION: The topical use of FN in duodenal sutured wounds in rats enhances healing by stimulating the appearence of fibroblasts into the wound site and development of granulation tissue. This acceleration of the repair process may have an important application in the healing of duodenal wounds.


2021 ◽  
Vol 22 (16) ◽  
pp. 8659
Author(s):  
Wiktor Paskal ◽  
Michał Kopka ◽  
Albert Stachura ◽  
Adriana M. Paskal ◽  
Piotr Pietruski ◽  
...  

In this study, we aimed to investigate the influence of N-acetylcysteine (NAC) on the gene expression profile, neoangiogenesis, neutrophils and macrophages in a rat model of incisional wounds. Before creating wounds on the backs of 24 Sprague–Dawley rats, intradermal injections were made. Lidocaine–epinephrin solutions were supplemented with 0.015%, 0.03% or 0.045% solutions of NAC, or nothing (control group). Scars were harvested on the 3rd, 7th, 14th and 60th day post-surgery. We performed immunohistochemical staining in order to visualize macrophages (anti-CD68), neutrophils (anti-MPO) and newly formed blood vessels (anti-CD31). Additionally, RT-qPCR was used to measure the relative expression of 88 genes involved in the wound healing process. On the 14th day, the number of cells stained with anti-CD68 and anti-CD31 antibodies was significantly larger in the tissues treated with 0.03% NAC compared with the control. Among the selected genes, 52 were upregulated and six were downregulated at different time points. Interestingly, NAC exerted a significant effect on the expression of 45 genes 60 days after its administration. In summation, a 0.03% NAC addition to the pre-incisional anesthetic solution improves neovasculature and increases the macrophages’ concentration at the wound site on the 14th day, as well as altering the expression of numerous genes that are responsible for the regenerative processes.


Sign in / Sign up

Export Citation Format

Share Document