scholarly journals Essential Stressing State Features of Laterally Loaded Masonry Wall Panels Revealed from Experimental Displacements

Author(s):  
Bai Liu ◽  
Rui Li ◽  
Yu Zhang ◽  
Guangchun Zhou

Abstract This study reveals the essential and general working features of laterally loaded masonry (LLM) wall panels from their experimental displacements by applying structural stressing state theory. Firstly, the generalized work of force is proposed to express the stressing state mode and its characteristic parameter. Then, the Mann-Kendall criterion is applied to detect the mutation point in the curve of the characteristic parameter with the load increase. Correspondingly, it is verified that the evolution of the stressing state mode also embodies the mutation feature. The stressing state mutation feature is inherent and common as the embodiment of the natural law from quantitative change to qualitative change of a system. The stressing state mutation feature reveals the starting point of structural failure process, which could update the existing definition of structural failure load. Further, the elastoplastic branch (EPB) point is revealed referring to the updated failure load, which might be directly taken as the design load with the rational margin of safety. In a sense, this paper presents a new way to address the classic issue of structural load-bearing capacity uncertainty and to update the existing design codes of LLM wall panels.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1841
Author(s):  
Jun Shi ◽  
Jiyang Shen ◽  
Xiaohui Yu ◽  
Junran Liu ◽  
Guangchun Zhou ◽  
...  

This paper experimentally investigates the working behavior characteristics of an integral abutment curved box-girder (IACBG) bridge model based on the structural stressing state theory. First, the stressing state of the bridge model is represented by generalized strain energy density (GSED) values at each load Fj and characterized by the normalized GSED sum Ej,norm. Then, the Mann-Kendall (M-K) criterion is adopted to detect the stressing state mutations of the bridge model from Ej,norm-Fj curve in order to achieve the new definition of structural failure load. Correspondingly, the stressing state modes for the bridge model’s sections and internal forces are reached in order to investigate their variation characteristics and the coordinated working behavior around the updated failure load. The unseen knowledge is revealed by studying working behavior characteristics of the bridge model. Therefore, the analytical results could provide a new structural analysis method, which updates the definition of the existing structural failure load and provides a reference for future design of the bridges.


2019 ◽  
Vol 25 (3) ◽  
pp. 215-227 ◽  
Author(s):  
Jun Shi ◽  
Kangkang Yang ◽  
Kaikai Zheng ◽  
Jiyang Shen ◽  
Guangchun Zhou ◽  
...  

This paper conducts the experimental and simulative analysis of stressing state characteristics for parabolic concretefilled steel tubular (CFST) arches undergoing vertical loads. The measured stain data is firstly modeled as the generalized strain energy density (GSED) to describe structural stressing state mode. Then, the normalized GSED sum Ej,norm at each load Fj derives the Ej,norm-Fj curve reflecting the stressing state characteristics of CFST arches. Furthermore, the Mann-Kendall criterion is adopted to detect the stressing state change of the CFST arch during its load-bearing process, leading to the revelation of a vital stressing state leap characteristic according to the natural law from quantitative change to qualitative change of a system. The revealed qualitative leap characteristic updates the existing definition of the CFST arch’s failure load. Finally, the accurate formula is derived to predict the failure/ultimate loads of CFST arches. Besides, a method of numerical shape function is proposed to expand the limited strain data for further analysis of the stressing state submodes. The GSED-based analysis of structural stressing state opens a new way to recognize the unseen working behavior characteristics of arch structures and the updated failure load could contribute to the improvement on the structural design codes.


2020 ◽  
Vol 40 (2) ◽  
pp. 1-9
Author(s):  
Yanxia Huang ◽  
Qunyi Huang ◽  
Liang Cui ◽  
Keyue Zhang ◽  
Ming Zhang

This paper proposed a method for predicting failure loads of masonry wall panels subject to uniformly distributed lateral loading based on a concept of structural stress state. Firstly, the characteristics of the structural stress state of masonry wall panels subjected to uniform distributed lateral loading were investigated through experimental results. Then, a new parameter was proposed to characterize the structural stress state. Next, the relation of the failure loads between a specified base wall panels and other wall panel was established using the proposed parameter. In this way, a method (called a ST method) based on a structural stress state parameter to predict the failure load of masonry wall panel from the base wall panel was established. The following case studies validated the ST method by comparing the predicted failure load with the experimental results, as well as those predicted from the existing yield line theory (YLT), the FEA method and the GSED-based cellular automata (CA) method. The ST method provided an innovative way of structural analysis on the basis of structural stress state.


2010 ◽  
Vol 160-162 ◽  
pp. 135-139
Author(s):  
Ji Kun Zhao

With static and dynamic load for the research background, this paper conducted a four-phase composite model for concrete damage test simulation of micro-mechanics. The two kinds of three-point bending beam load ware studied in case of failure process. The study found that the location of the main crack in the most disadvantaged section of beam shear in the vicinity. Crack is always along the aggregate and the mortar bond zone be extended. The main crack extension direction is always toward the load point. The main crack is showing a tortuous shape. Dynamic load and static load the stress - strain curve is basically similar shape, but basically the same as the starting point of the initial fracture. Stress wave in the sample after multiple visits, is the main reason leading to the breakdown of the sample. Dynamic load cases, the concrete elastic modulus higher than the static modulus of elasticity, numerical simulation results agree well with the experimental results.


2018 ◽  
Vol 8 (1) ◽  
pp. 98 ◽  
Author(s):  
Marco Corradi ◽  
Romina Sisti ◽  
Antonio Borri

1991 ◽  
Vol 28 (5) ◽  
pp. 752-759
Author(s):  
R. W. Marcellus ◽  
D. N. Heuff

Brittle fracture of ice plays an extremely interesting and complex role in the ice failure process. This paper provides a general overview of the behavior and structure of ice on both the microscopic and macroscopic levels. The idea that the failure load on any type of ice is dependent on the load path that the ice experiences prior to failure is discussed. This paper also provides a general overview of the different fracture mechanisms that occur during ice failure and introduces a new concept for describing the crushing process. Key words: ice, fracture, brittle, failure, ice-structure interaction, ice strength, new crushing concept, microcrack, macrocrack.


Sign in / Sign up

Export Citation Format

Share Document