scholarly journals Characteristics of Concentrated Lignocellulosic Nanofibrils Suspension

Author(s):  
Ping Wang ◽  
Luyao Huang ◽  
Lilong He ◽  
Wenhua Gao ◽  
Jinsong Zeng ◽  
...  

Abstract Lignocellulosic nanofibrils (LCNF) is usually isolated from biomass with concentration less than 2.0 wt%. The low concentration limited the transportation and end-use application of LCNF. Therefore, the development of concentration process and the characteristics of concentrated LCNF become desirable and important for commercial deployment of LCNF application. In this study, 1.0 wt% LCNF suspension was dewatered to solid concentration of 5.9 wt%, 16.3 wt% and 25.9 wt% by a centrifuge, respectively. The un-concentrated LCNF suspension showed obviously stable translucent and well dispersed in water, while the concentrated LCNF exhibited the gel-like behavior or “solid-like” behavior based on the concentration degree. The bundle-like fibrils were observed in the concentrated LCNF, and average diameter of concentrated LCNF became large but still less than 100 nm. The crystallinity and crystallite size of un-concentrated LCNF and concentrated LCNF were similar, and it was indicated that the morphological structure changes of LCNF mainly occurred in the amorphous region of fibrils. The concentrated LCNF films still had relatively good UV-blocking property, water absorption and oxygen permeability. The increasing basis weight of films was benefit for enhancing the surface smoothness of films and interweaves between fibrils, resulting in the tensile index and specific modulus of films increasing. In sum, the concentration process affected the morphology structure of LCNF, but the concentrated LCNF still kept relatively good properties. Concentration process of LCNF suspension may be a feasible strategy for large-scale LCNF production and storage.

2015 ◽  
Vol 68 (10) ◽  
pp. 1508 ◽  
Author(s):  
S. Sasi Florence ◽  
M. Umadevi ◽  
D. Lawrence Arockiasamy ◽  
Rita John

Hydrazone derivatives containing heterocyclic moieties have interesting ligational features. Various heterocyclic base ligands have been gradually used to synthesize nanomaterials; however, adapting task-specific ligand systems to guide the synthesis path towards desirable nanostructures and morphologies is rare. In this article, bishydrazone was used as a ligand to purposely modify the morphological structure of the zinc selenide nanostructures via wet chemical reaction method at room temperature. The as-prepared ZnSe nanorods are relatively uniform with an average diameter of ~100 nm at the core and top diameter of 8–10 nm. UV-Vis spectrum of the products displayed absorption maxima at 390 nm. Therefore, the obtained ZnSe nanorods may have promising applications in blue emitters, catalysts, and gas sensors. The presence of bishydrazone in the ZnSe nanorods is confirmed by the Fourier transform infrared spectrum. It would be expected that bishydrazone could be used to prepare other nanoscale metal selenides with special morphologies and improved properties on a large scale.


2020 ◽  
Vol 501 (2) ◽  
pp. 1755-1765
Author(s):  
Andrew Pontzen ◽  
Martin P Rey ◽  
Corentin Cadiou ◽  
Oscar Agertz ◽  
Romain Teyssier ◽  
...  

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego Fernando Roa Acosta ◽  
José Fernando Solanilla Duque ◽  
Lina Marcela Agudelo Laverde ◽  
Héctor Samuel Villada Castillo ◽  
Marcela Patricia Tolaba

AbstractIn this study, amaranth starch was extracted by high-impact wet milling and its structural and thermal properties and the effect of NaOH and SDS concentrations on extraction yield were evaluated. The best condition was 55 g of starch/100 g of amaranth, with a decrease from 2.5 to 3.5 kJ/g using different milling energies. The decrease in the protein content of the starch granule is due to an effect of the interaction between surfactant and alkali, preventing the destruction of granules. All starches presented a degree of crystallinity between 21 and 28%. The internal structural changes of the starch granule were monitored by attenuated total reflectance - Fourier-transform infrared (ATR-FTIR) in the region of 990 to 1060 cm−1. Spectra showed significant differences between the peaks at 1032 and 1005 cm−1, corresponding to the crystalline/amorphous region of the starch structure. Changes in viscosity profiles were observed between 0.302 and 1.163 Pa s.


2021 ◽  
Vol 64 (6) ◽  
pp. 107-116
Author(s):  
Yakun Sophia Shao ◽  
Jason Cemons ◽  
Rangharajan Venkatesan ◽  
Brian Zimmer ◽  
Matthew Fojtik ◽  
...  

Package-level integration using multi-chip-modules (MCMs) is a promising approach for building large-scale systems. Compared to a large monolithic die, an MCM combines many smaller chiplets into a larger system, substantially reducing fabrication and design costs. Current MCMs typically only contain a handful of coarse-grained large chiplets due to the high area, performance, and energy overheads associated with inter-chiplet communication. This work investigates and quantifies the costs and benefits of using MCMs with finegrained chiplets for deep learning inference, an application domain with large compute and on-chip storage requirements. To evaluate the approach, we architected, implemented, fabricated, and tested Simba, a 36-chiplet prototype MCM system for deep-learning inference. Each chiplet achieves 4 TOPS peak performance, and the 36-chiplet MCM package achieves up to 128 TOPS and up to 6.1 TOPS/W. The MCM is configurable to support a flexible mapping of DNN layers to the distributed compute and storage units. To mitigate inter-chiplet communication overheads, we introduce three tiling optimizations that improve data locality. These optimizations achieve up to 16% speedup compared to the baseline layer mapping. Our evaluation shows that Simba can process 1988 images/s running ResNet-50 with a batch size of one, delivering an inference latency of 0.50 ms.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1568
Author(s):  
Rebecca R. Milczarek ◽  
Carl W. Olsen ◽  
Ivana Sedej

Watermelon (Citrullus lanatus) juice is known for its refreshing flavor, but its high perishability limits its availability throughout the year. Watermelon juice concentrate has extended shelf-life and lower transportation and storage costs, but the conventional thermal evaporation process for concentrating juice degrades the nutritional components and sensory quality of the product. Thus, in this work, a large-scale, non-thermal forward osmosis (FO) process was used to concentrate fresh watermelon juice up to 65°Brix. The FO concentrate was compared to thermal concentrate and fresh juices, and to commercially available refrigerated watermelon juices, in terms of lycopene and citrulline content, total soluble phenolics, antioxidant activity, and sensory properties. The FO concentrate had statistically similar (p < 0.05) levels of all the nutrients of interest except antioxidant activity, when compared to the thermal concentrate. The reconstituted FO concentrate maintained the same antioxidant activity as the raw source juice, which was 45% higher than that of the reconstituted thermal concentrate. Sensory results showed that reconstituted FO concentrate resulted in highly liked juice, and it outperformed the reconstituted thermal concentrate in the sensory hedonic rating. This work demonstrates the possibility to produce a high-quality watermelon juice concentrate by forward osmosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chen Zhang ◽  
Bin Hu ◽  
Yucong Suo ◽  
Zhiqiang Zou ◽  
Yimu Ji

In this paper, we study the challenge of image-to-video retrieval, which uses the query image to search relevant frames from a large collection of videos. A novel framework based on convolutional neural networks (CNNs) is proposed to perform large-scale video retrieval with low storage cost and high search efficiency. Our framework consists of the key-frame extraction algorithm and the feature aggregation strategy. Specifically, the key-frame extraction algorithm takes advantage of the clustering idea so that redundant information is removed in video data and storage cost is greatly reduced. The feature aggregation strategy adopts average pooling to encode deep local convolutional features followed by coarse-to-fine retrieval, which allows rapid retrieval in the large-scale video database. The results from extensive experiments on two publicly available datasets demonstrate that the proposed method achieves superior efficiency as well as accuracy over other state-of-the-art visual search methods.


2013 ◽  
Vol 13 (2) ◽  
pp. 294-301 ◽  
Author(s):  
M. Sinclair ◽  
J. O'Toole ◽  
M. Malawaraarachchi ◽  
K. Leder

Research on the potential of greywater reuse to reduce urban tap water demand has focused mainly on permanently installed greywater treatment or irrigation systems. These may be readily implemented in new housing developments, but experience in Australia shows their uptake by established households in urban areas is low. The majority of households employ simple and temporary methods for greywater collection and use, but their behaviour has not been well documented. We characterised the greywater use practices of over 1,000 Melbourne households during a 5-year period (2007 to 2011) which included 3 years of severe drought with stringent restrictions on outdoor tap water use. Greywater was most frequently collected from the laundry and bathroom, and generally used within 24 hours. Garden watering was the most common end use, and treatment of greywater to reduce microbial contamination was very rare. Volume estimates by householders suggest that on average around 10% of tap water used in the home was being collected for reuse. When drought conditions and water restrictions eased, over 40% of user households discontinued greywater use. Widespread adoption of permanent greywater collection, treatment and storage systems by households would be required to achieve a lasting effect on urban water consumption.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document