scholarly journals Effect of Eccentric and Concentric Contraction Mode on Myogenic Regulatory Factors Expression in Human Vastus Lateralis Muscle

Author(s):  
Mostafa Sabouri ◽  
Pejman Taghibeikzadehbadr ◽  
Fatemeh Shabkhiz ◽  
Zahra Izanloo ◽  
Farahnaz Amir Shaghaghi

Abstract Background: Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs. concentric contraction. Methods: Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 seconds. The baseline biopsy was performed four weeks before the study, and post-test biopsies were taken immediately after exercise protocols from Vastus Lateralis muscle. The gene expression levels evaluated using Real-Time PCR methods. Results: A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P≤0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P≤0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P≤0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin were observed at the follow-up values between eccentric or concentric groups (P≤0.05). Conclusion: Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following to various types of exercise.

1999 ◽  
Vol 90 (4) ◽  
pp. 1019-1025 ◽  
Author(s):  
Hugo Reyford ◽  
Pascal J. Adnet ◽  
Benoit Tavernier ◽  
Sebastien Beague ◽  
Joel Ferri ◽  
...  

Background An increase in masseter muscle tone in response to halothane or succinylcholine anesthesia (or both) can be observed in healthy persons. Thus the authors compared the fiber-type halothane and succinylcholine sensitivities in human masseter and vastus lateralis muscles. Methods Masseter and vastus lateralis muscle segments were obtained from 13 and 9 healthy persons, respectively. After chemical skinning of a single fiber and loading the sarcoplasmic reticulum with Ca++ 0.16 microM solution, halothane (0.5-4 vol% bubbled in the incubating solution), succinylcholine (0.1 microM to 10 mM), or both sensitivities were defined as the concentration inducing more than 10% of the maximum tension obtained by application of 16 microM Ca++ solution. The myofilament response to Ca++ was studied with and without halothane by observing the isometric tension of skinned masseter fibers challenged with increasing concentrations of Ca++. Muscle fiber type was determined by the difference in strontium-induced tension measurements. Results A significant difference in halothane sensitivity was found between type 1 masseter fibers (0.6+/-0.2 vol%; mean +/- SD) versus type 1 (2.7+/-0.6 vol%) and type 2 vastus lateralis muscle (2.5+/-0.4 vol%). Succinylcholine did not induce Ca++ release by the sarcoplasmic reticulum. In the masseter muscle, 0.75 vol% halothane decreased the maximal activated tension by 40% but did not change the Ca++ concentration that yields 50% of the maximal tension. Conclusions The very low halothane threshold for Ca++ release from the masseter muscle usually could be counteracted by a direct negative inotropic effect on contractile proteins. However, halothane may increase the sensitivity of the sarcoplasmic reticulum Ca++ release to succinylcholine-induced depolarization, leading to an increase in masseter muscle tone.


2011 ◽  
Vol 301 (5) ◽  
pp. R1259-R1266 ◽  
Author(s):  
Kenneth M. Baldwin ◽  
Denis R. Joanisse ◽  
Fadia Haddad ◽  
Rochelle L. Goldsmith ◽  
Dympna Gallagher ◽  
...  

Maintenance of a 10% or greater reduced body weight results in decreases in the energy cost of low levels of physical activity beyond those attributable to the altered body weight. These changes in nonresting energy expenditure are due mainly to increased skeletal muscle work efficiency following weight loss and are reversed by the administration of the adipocyte-derived hormone leptin. We have also shown previously that the maintenance of a reduced weight is accompanied by a decrease in ratio of glycolytic (phosphofructokinase) to oxidative (cytochrome c oxidase) activity in vastus lateralis muscle that would suggest an increase in the relative expression of the myosin heavy chain I (MHC I) isoform. We performed analyses of vastus lateralis muscle needle biopsy samples to determine whether maintenance of an altered body weight was associated with changes in skeletal muscle metabolic properties as well as mRNA expression of different isoforms of the MHC and sarcoplasmic endoplasmic reticular Ca2+-dependent ATPase (SERCA) in subjects studied before weight loss and then again after losing 10% of their initial weight and receiving twice daily injections of either placebo or replacement leptin in a single blind crossover design. We found that the maintenance of a reduced body weight was associated with significant increases in the relative gene expression of MHC I mRNA that was reversed by the administration of leptin as well as an increase in the expression of SERCA2 that was not significantly affected by leptin. Leptin administration also resulted in a significant increase in the expression of the less MHC IIx isoform compared with subjects receiving placebo. These findings are consistent with the leptin-reversible increase in skeletal muscle chemomechanical work efficiency and decrease in the ratio of glycolytic/oxidative enzyme activities observed in subjects following dietary weight loss.


2007 ◽  
Vol 103 (4) ◽  
pp. 1242-1250 ◽  
Author(s):  
Scott Trappe ◽  
Andrew Creer ◽  
Dustin Slivka ◽  
Kiril Minchev ◽  
Todd Trappe

There is limited information on skeletal muscle properties in women with unloading and countermeasure programs to protect the unloading-induced atrophy. The current investigation tested the hypothesis that a concurrent aerobic and resistance exercise training program would preserve size and contractile function of slow- and fast-twitch muscle fibers. A secondary objective was to test the hypothesis that a leucine-enriched high-protein diet would partially attenuate single fiber characteristics. Vastus lateralis muscle biopsies were obtained before and on day 59 of bed rest from a control (BR; n = 8), nutrition (BRN; n = 8), or exercise (BRE; n = 8) group. Single muscle fibers were studied for diameter, peak force (Po), contractile velocity, and power. Those in the BR group had a decrease ( P < 0.05) in myosin heavy chain (MHC) I diameter (−14%), Po (−35%), and power (−42%) and MHC IIa diameter (−16%) and Po (−31%; P = 0.06) and an increase ( P < 0.05) in MHC hybrid fibers. Changes in size and function of MHC I (−19 to −44%) and IIa (−21% to −30%) fibers and MHC distribution in BRN individuals were similar to results in the BR group. In BRE conditions, MHC I and IIa size and contractile function were preserved during bed rest. These data show that the concurrent exercise program preserved the myocellular profile of the vastus lateralis muscle during 60-day bed rest. To combat muscle atrophy and function with long-term unloading, the exercise prescription program used in this study should be considered as a viable training program for the upper leg muscles, whereas the nutritional intervention used cannot be recommended as a countermeasure for skeletal muscle.


1999 ◽  
pp. 342-349 ◽  
Author(s):  
◽  
M Bramnert ◽  
P Manhem ◽  
T Endre ◽  
LC Groop ◽  
...  

OBJECTIVE: To investigate the effect of GH on myosin heavy chain (MHC) isoform composition, physical fitness and body composition in GH-deficient (GHD) patients. DESIGN: Twenty-two GHD patients were randomized in a double blind manner and half were treated with recombinant human GH (rhGH) and half were treated with placebo for 6 months. Twelve age-matched controls were also included in the study. METHODS: MHC isoform composition in biopsies obtained from the vastus lateralis muscle was determined using SDS-PAGE. Physical fitness was determined on a bicycle ergometer and body composition was determined using bioelectrical impedance analysis. RESULTS: More MHC IIX (28.9 +/- 4.1% and 10.0 +/- 3.1% in GHD and controls respectively (means +/- S.E.M.)) and less MHC I (36.2 +/- 2.4% and 51.7 +/- 3.9% in GHD and controls respectively (means +/- S.E.M.)) were present in the GHD patients compared with the controls. No significant difference in the amount of MHC IIA was detected. Linear regression was used to determine the relationship between variables. There were no significant relationships between the concentration of insulin-like growth factor-I (IGF-I) or the body composition and the MHC composition. Maximal oxygen uptake (VO(2)max) per kg body weight (BW) (litres/min per kg) correlated significantly with the amount of MHC I (r=0.60) and MHC IIX (r=-0.72) but not with the amount of MHC IIA (r=0.35). Treatment of GHD patients with rhGH for 6 months increased the concentration of IGF-I, lean body mass and decreased fat mass but had no effect on MHC composition and physical fitness. CONCLUSIONS: We conclude that a major part of the differences in MHC composition between GHD patients and age-matched controls can be explained by variation in physical fitness. The severity of the GHD and the body composition does not seem to be important for the MHC composition. Furthermore, treatment with GH for 6 months does not affect MHC composition in GHD patients.


Author(s):  
Vishnu Mohan ◽  
Gopikrishna BJ ◽  
Avnish Pathak ◽  
Mahesh Kumar ES ◽  
Duradundi G

Myositis ossificansis characterized by heterotopic ossification (calcification) of muscle of various etiologies. It is most commonly affected in the quadriceps of the thighs. There are many tools available for diagnosis of Myositis ossificans, but lack of satisfactory treatment. So the development of a treatment protocol for Myositis ossificans is the need of today`s era. In Ayurveda, the same can be understood as Urusthamba. The present paper discusses a case of Myositis ossificans of right vastus lateralis muscle and its Ayurvedic treatment.


2021 ◽  
pp. 110735
Author(s):  
Theresa Domroes ◽  
Gunnar Laube ◽  
Sebastian Bohm ◽  
Adamantios Arampatzis ◽  
Falk Mersmann

2012 ◽  
Vol 49 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Jose G. Christiano ◽  
Amir H. Dorafshar ◽  
Eduardo D. Rodriguez ◽  
Richard J. Redett

A 6-year-old girl presented with a large recalcitrant oronasal fistula after bilateral cleft lip and palate repair and numerous secondary attempts at fistula closure. Incomplete palmar arches precluded a free radial forearm flap. A free vastus lateralis muscle flap was successfully transferred. No fistula recurrence was observed at 18 months. There was no perceived thigh weakness. The surgical scar healed inconspicuously. Free flaps should no longer be considered the last resort for treatment of recalcitrant fistulas after cleft palate repair. A free vastus lateralis muscle flap is an excellent alternative, and possibly a superior option, to other previously described free flaps.


Sign in / Sign up

Export Citation Format

Share Document