scholarly journals Regulating Surface and Local Chemistry in High Na-content P2-type Cathode to Achieve Ultrahigh Power and Low Temperature Sodium Storage

Author(s):  
Qinhao Shi ◽  
Ruijuan Qi ◽  
Xiaochen Feng ◽  
Jing Wang ◽  
Yong Li ◽  
...  

Abstract Application of sodium ion batteries in grid-scale energy storage demands electrode materials that facilitate fast and stable charge storage from room-temperature to sub-zero temperature range. The key issues that hinder P2-type layered oxides from achieving such goals are their unsatisfied charge transfer kinetics and unavoidable surface fading. Herein, we report a P2-type Na0.78Ni0.31Mn0.67Nb0.02O2 whereby the trace Nb substitution simultaneously reduces the electronic band gap and ionic diffusion energy barrier, thus enables fast electron and Na+ mobility (~10-9 cm s-1 at -40 °C). While the Nb induced atomic-scale surface pre-construction efficiently prevents the electrolyte penetration and surface metal dissolution. The material demonstrates a record high rate capability (50 C), unprecedented low temperature performance and ultrahigh cycling stability (98% capacity retention at -40 °C with 76% capacity remaining after 1800 cycles). Different from literatures, this work shows that complete solid-solution is not always critical for high rate performance.

2018 ◽  
Vol 54 (25) ◽  
pp. 3178-3181 ◽  
Author(s):  
Atsushi Inoishi ◽  
Akira Nishio ◽  
Yuto Yoshioka ◽  
Ayuko Kitajou ◽  
Shigeto Okada

We report a battery made from a single material using Li1.5Cr0.5Ti1.5(PO4)3 as the anode, cathode and electrolyte.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


Author(s):  
Li Sun ◽  
Zhenbin Xie ◽  
Aiping Wu ◽  
Chungui Tian ◽  
Dongxu Wang ◽  
...  

The electrode materials with a high rate capability and excellent recycled ability are vitally critical for building the supercapacitors, but it synthesis remains a challenge. Herein, we have constructed the...


2017 ◽  
Vol 5 (3) ◽  
pp. 1282-1291 ◽  
Author(s):  
Yang Song ◽  
Shuqiang Jiao ◽  
Jiguo Tu ◽  
Junxiang Wang ◽  
Yingjun Liu ◽  
...  

In this study, we established a rechargeable aluminum ion super battery with high-rate capability using a low temperature inorganic molten salt which is much cheaper, safer and environmentally friendly.


2019 ◽  
Vol 31 (8) ◽  
pp. 1709-1718
Author(s):  
T. Veldevi ◽  
K. Thileep Kumar ◽  
R.A. Kalaivani ◽  
S. Raghu ◽  
A.M. Shanmugharaj

Hierarchical nanostructured graphene–manganese dioxide nanowire (G-MnO2-NW) composites have been prepared by hydrothermal synthesis route using water/1-decanol as the medium. Synthesized materials were analyzed using various characterization tools to corroborate their chemical compositions, structure/morphology and surface area. Electrochemical measurements of the synthesized G-MnO2-NW electrode materials delivered the highest specific capacity (255 Fg-1), high rate capability and improved cycling stability at 0.5 Ag–1 in 1M sodium sulfate solution and this fact may be attributed to its high surface area and porosity. Moreover, synthesized G-MnO2-NW electrodes displayed better energy and power density, when compared to the MnO2-NW based electrodes.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Zhen Bi ◽  
Lanyan Huang ◽  
Chaoqun Shang ◽  
Xin Wang ◽  
Guofu Zhou

Copper tin sulfides (CTSs) have widely been investigated as electrode materials for supercapacitors owing to their high theoretical pseudocapacitances. However, the poor intrinsic conductivity and volume change during redox reactions hindered their electrochemical performances and broad applications. In this study, carbon quantum dots (CQDs) were employed to modify CTSs. The structures and morphologies of obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD revealed CTSs were composed of Cu2SnS3 and Cu4SnS4, and TEM suggested the decoration of CQDs on the surface of CTSs. With the decoration of CQDs, CTSs@CQDs showed a remarkable specific capacitance of 856 F·g−1 at 2 mV·s−1 and a high rate capability of 474 F·g−1 at 50 mV·s−1, which were superior to those of CTSs (851 F·g−1 at 2 mV·s−1 and 192 F·g−1 at 50 mV·s−1, respectively). This was mainly ascribed to incorporation of carbon quantum dots, which improved the electrical conductivity and alleviated volume change of CTSs during charge/discharge processes.


RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 12034-12042 ◽  
Author(s):  
Hui Peng ◽  
Guofu Ma ◽  
Kanjun Sun ◽  
Jingjing Mu ◽  
Xiaozhong Zhou ◽  
...  

Nitrogen-containing polyaniline-based carbon nanospheres (C-PANI) with diameters of about 200 nm are prepared through a direct carbonization method using polyaniline (PANI) nanospheres as carbon precursors at different temperatures.


Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tao Sun ◽  
Zong-Jun Li ◽  
Xin-Bo Zhang

Organic electrode materials are receiving ever-increasing research interest due to their combined advantages, including resource renewability, low cost, and environmental friendliness. However, their practical applications are still terribly plagued by low conductivity, poor rate capability, solubility in electrolyte, and low density/utilization of active groups. In response, herein, as a proof-of-concept experiment, C=N and C=O bonds are synergically integrated into the backbone of pentacene to finely tune the electronic structures of pentacene. Unexpectedly, the firstly obtained unique 5,7,11,14-tetraaza-6,13-pentacenequinone/reduced graphene oxide (TAPQ/RGO) composite exhibits superior electrochemical performances, including an ultra-stable cycling stability (up to 2400 cycles) and good rate capability (174 mAh g−1 even at a high current density of 3.2 A g−1), which might be attributed to the abundant active groups, π-conjugated molecular structure, leaf-like morphology, and the interaction between TAPQ and graphene.


Sign in / Sign up

Export Citation Format

Share Document