electron deficiency
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Dao-Cheng Liu ◽  
Yu Chen ◽  
Jie-Ying Jing ◽  
Antony Rajendran ◽  
Hong-Cun Bai ◽  
...  

The saturation of octahydrophenanthrene was the rate-determining step in the hydrogenation process from phenanthrene to perhydrophenanthrene, which was due to the steric hindrance and competitive adsorption of octahydrophenanthrene. In this work, a series of Ni/NiAlOx catalysts with a uniform electron-deficient state of Ni derived from the nickel aluminate structure was synthesized to overcome the disadvantage of noble catalyst and the traditional sulfided catalysts in the saturation hydrogenation process of phenanthrene. Results showed that the catalyst calcinated at 650°C possessed more Ni2+ (∼98%) occupying octahedral sites and exhibited the highest robs (1.53 × 10−3 mol kg−1 s−1) and TOF (14.64 × 10−3 s−1) for phenanthrene hydrogenation. Furthermore, its ability to overcome steric hindrance and promote the rate-determining step was proven by octahydrophenanthrene hydrogenation. Comparing the evolution of hydrogenation activity with the change in the electronic structure of surface Ni sites, it was shown that the increase of metallic electron deficiency hindered the π-back bonding between surface Ni and aromatic rings, which was unfavorable for aromatic adsorption. As a result, the phenanthrene hydrogenation saturation performance can be enhanced by stabilizing the electron-deficient state of surface Ni on an optimal degree.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyeokjin Kwon ◽  
Ju-Hyuk Lee ◽  
Youngil Roh ◽  
Jaewon Baek ◽  
Dong Jae Shin ◽  
...  

AbstractThe long-term cycling of anode-free Li-metal cells (i.e., cells where the negative electrode is in situ formed by electrodeposition on an electronically conductive matrix of lithium sourced from the positive electrode) using a liquid electrolyte is affected by the formation of an inhomogeneous solid electrolyte interphase (SEI) on the current collector and irregular Li deposition. To circumvent these issues, we report an atomically defective carbon current collector where multivacancy defects induce homogeneous SEI formation on the current collector and uniform Li nucleation and growth to obtain a dense Li morphology. Via simulations and experimental measurements and analyses, we demonstrate the beneficial effect of electron deficiency on the Li hosting behavior of the carbon current collector. Furthermore, we report the results of testing anode-free coin cells comprising a multivacancy defective carbon current collector, a LixNi0.8Co0.1Mn0.1-based cathode and a nonaqueous Li-containing electrolyte solution. These cells retain 90% of their initial capacity for over 50 cycles under lean electrolyte conditions.


Author(s):  
Ferdinand L. Kiss ◽  
Brian P. Corbet ◽  
Nadja A. Simeth ◽  
Ben L. Feringa ◽  
Stefano Crespi

AbstractIsoindigo, the structural isomer of the well-known dye indigo, has seen a major revival recently because of the increasing interest of its use as a potential drug core structure and for the development of organic photovoltaic materials. Highly beneficial for diverse applications are its facile synthesis, straightforward functionalisation and the broad absorption band in the visible range. Moreover, its intrinsic electron deficiency renders isoindigo a promising acceptor structure in bulk heterojunction architectures. Here we present new insights into the substituent effects of N-functionalised isoindigos, developing a reliable and fast in silico screening approach of a library of compounds. Using experimental UV–Vis and electrochemical data increased the accuracy of the TD-DFT method employed. This procedure allowed us to accurately predict the optical and electrochemical properties of N-functionalised isoindigos and the elucidation of the relationship between substituent effects and electronic properties. Graphic abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiu Lin ◽  
Shi-Nan Zhang ◽  
Dong Xu ◽  
Jun-Jun Zhang ◽  
Yun-Xiao Lin ◽  
...  

AbstractThe activation of C–H bonds is a central challenge in organic chemistry and usually a key step for the retro-synthesis of functional natural products due to the high chemical stability of C–H bonds. Electrochemical methods are a powerful alternative for C–H activation, but this approach usually requires high overpotential and homogeneous mediators. Here, we design electron-deficient W2C nanocrystal-based electrodes to boost the heterogeneous activation of C–H bonds under mild conditions via an additive-free, purely heterogeneous electrocatalytic strategy. The electron density of W2C nanocrystals is tuned by constructing Schottky heterojunctions with nitrogen-doped carbon support to facilitate the preadsorption and activation of benzylic C–H bonds of ethylbenzene on the W2C surface, enabling a high turnover frequency (18.8 h−1) at a comparably low work potential (2 V versus SCE). The pronounced electron deficiency of the W2C nanocatalysts substantially facilitates the direct deprotonation process to ensure electrode durability without self-oxidation. The efficient oxidation process also boosts the balancing hydrogen production from as-formed protons on the cathode by a factor of 10 compared to an inert reference electrode. The whole process meets the requirements of atomic economy and electric energy utilization in terms of sustainable chemical synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3754
Author(s):  
Igor E. Golub ◽  
Oleg A. Filippov ◽  
Natalia V. Belkova ◽  
Lina M. Epstein ◽  
Elena S. Shubina

The mechanism of the consecutive halogenation of the tetrahydroborate anion [BH4]− by hydrogen halides (HX, X = F, Cl, Br) and hexahydro-closo-hexaborate dianion [B6H6]2− by HCl via electrophile-induced nucleophilic substitution (EINS) was established by ab initio DFT calculations [M06/6-311++G(d,p) and wB97XD/6-311++G(d,p)] in acetonitrile (MeCN), taking into account non-specific solvent effects (SMD model). Successive substitution of H− by X− resulted in increased electron deficiency of borohydrides and changes in the character of boron atoms from nucleophilic to highly electrophilic. This, in turn, increased the tendency of the B–H bond to transfer a proton rather than a hydride ion. Thus, the regularities established suggested that it should be possible to carry out halogenation more selectively with the targeted synthesis of halogen derivatives with a low degree of substitution, by stabilization of H2 complex, or by carrying out a nucleophilic substitution of B–H bonds activated by interaction with Lewis acids (BL3).


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3309
Author(s):  
Paolo Saul Coghi ◽  
Yinghuai Zhu ◽  
Hongming Xie ◽  
Narayan S. Hosmane ◽  
Yingjun Zhang

The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.


2021 ◽  
Vol 19 (48) ◽  
pp. 79-88
Author(s):  
Ahlam Majead Kadhim ◽  
Huda Muhamed Jawad ◽  
Shaimaa H. Abd muslim

This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast enhancement of medical images Histogram Equalization and Adaptive Histogram Equalization used to improvement images properties. Canny edge detection operator used as a comparison tool between enhancement methods. The result show the absorbance of iobengaune in the range (1000 – 0 cm-1) of these single bonds from C-C, C-N, C-I, and C-O High absorbency and sharp peak of Maximum wavelength absorbed (640.66 nm) and the biggest energy (1.9353 eV). And half width is (0.333 eV) at half height is (2685.83cm-1). Electrostatic potential, electron deficiency were especially marked in rings benzene compounds exclusively of carbon and hydrogen atoms (focusing on areas of carbon), establishing this area as more electropositive. From the results of measures many functions like signal to noise ratio, mean, entropy and histogram of image, CT Scan images are best enhanced obtained using AHE technique in frequency. The dark regions of enhanced CT Scan images became clarity for input CT Scan image that having low contrast.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 639
Author(s):  
Song Thi Le ◽  
Haruyasu Asahara ◽  
Nagatoshi Nishiwaki

1-Methyl-3,5-dinitro-2-pyridone serves as an excellent substrate for nucleophilic-type ring transformation because of the electron deficiency and presence of a good leaving group. In this review, we focus on the three-component ring transformation (TCRT) of dinitropyridone involving a ketone and a nitrogen source. When dinitropyridone is allowed to react with a ketone in the presence of ammonia, TCRT proceeds to afford nitropyridines that are not easily produced by alternative procedures. Ammonium acetate can be used as a nitrogen source instead of ammonia to undergo the TCRT, leading to nitroanilines in addition to nitropyridines. In these reactions, dinitropyridone serves as a safe synthetic equivalent of unstable nitromalonaldehyde.


2021 ◽  
Author(s):  
Kejun Chen ◽  
Maoqi Cao ◽  
Yiyang Lin ◽  
Junwei Fu ◽  
Hanxiao Liao ◽  
...  

Abstract Designing efficient catalysts with high activity and selectivity is desirable and challenging for CO2 reduction reaction (CO2RR). Nickel phthalocyanine (NiPc) is a promising molecule catalyst for CO2RR. However, the pristine NiPc suffers from poor CO2 adsorption and activation due to its electron deficiency of Ni–N4 site, which leads to inferior activity and stability during CO2RR. Here, we develop a substituent-induced electronic localization strategy to improve CO2 adsorption and activation, and thus catalytic performance. Theoretic calculations and experimental results indicate that the electronic localization on the Ni site induced by electron-donating substituents (hydroxyl or amino) of NiPc greatly enhances the CO2 adsorption and activation, which is positively associated with the electron-donating abilities of substituents. Employing the optimal catalyst of amino-substituted NiPc to catalyze CO2 into CO in flow cell can achieve an ultrahigh activity and selectivity of 99.8% at the current densities up to 400 mA cm-2. This work offers a novel strategy to regulate the electronic structure of the active site by introducing substituents for highly efficient CO2RR.


2021 ◽  
Author(s):  
Xin Yang ◽  
Yongkun Yan ◽  
Weixuan Zeng ◽  
Ying Song ◽  
Wenhao Li ◽  
...  

A series of novel bis-acenaphthoquinone diimides featuring a highly electron-deficient bis-acenaphthoquinone core are facilely synthesized via Knoevenagel condensation reaction. The diimides show high electron deficiency and good coplanar conformation, together...


Sign in / Sign up

Export Citation Format

Share Document