scholarly journals Landscape of Lipidomic Metabolites in Gut-liver Axis of Sprague-Dawley Rats after Oral Exposure to Titanium Dioxide Nanoparticles

2020 ◽  
Author(s):  
Zhangjian Chen ◽  
Shuo Han ◽  
Pai Zheng ◽  
Jiahe Zhang ◽  
Shupei Zhou ◽  
...  

Abstract Background: The application of titanium dioxide nanoparticles (TiO2 NPs) as food additives poses a risk of oral exposure that may lead to adverse health effects. Even though the substantial evidence supported liver as the target organ of TiO2 NPs via oral exposure, the mechanism of liver toxicity remains largely unknown. Since the liver is a key organ for lipid metabolism, this study focused on the landscape of lipidomic metabolites in gut-liver axis of Sprague Dawley (SD) rats exposed to TiO2 NPs at 0, 2, 10, 50 mg/kg body weight per day for 90 days.Results: TiO2 NPs (50 mg/kg) caused slight hepatotoxicity and changed lipidomic signatures of main organs or systems in the gut-liver axis including liver, serum and gut. The cluster profile from the above biological samples all pointed to the same key metabolic pathway and metabolites, which was glycerophospholipid metabolism and Phosphatidylcholines (PCs), respectively. In addition, absolute quantitative lipidomics verified the changes of three PCs concentrations, including PC(16:0/20:1), PC(18:0/18:0) and PC(18:2/20:2) in the serum samples after treatment of TiO2 NPs (50 mg/kg). The contents of malondialdehyde (MDA) in serum and liver increased significantly, which were positively correlated with most differential lipophilic metabolites.Conclusions: The gut was presumed to be the original site of oxidative stress and disorder of lipid metabolism, which resulted in hepatotoxicity through the gut-liver axis. Lipid peroxidation may be the initial step of lipid metabolism disorder induced by TiO2 NPs. Most nanomaterials (NMs) have oxidation induction and antibacterial properties, so the toxic pathway revealed in the present study may be primary and universal.

Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5973-5986 ◽  
Author(s):  
Zhangjian Chen ◽  
Shuo Han ◽  
Pai Zheng ◽  
Di Zhou ◽  
Shupei Zhou ◽  
...  

The present study investigated the effect of oral exposure to TiO2 NPs on lipid metabolism by serum lipidomics.


2019 ◽  
Vol 35 (9) ◽  
pp. 577-592 ◽  
Author(s):  
Srijita Chakrabarti ◽  
Danswrang Goyary ◽  
Sanjeev Karmakar ◽  
Pronobesh Chattopadhyay

Health hazards of titanium dioxide nanoparticles (TiO2-NPs) have raised severe concerns because of the paucity of information regarding the toxic effects among the population. In the present research, the in vitro and in vivo cytotoxic potential of TiO2-NPs were evaluated using flow cytometric techniques. Further, in vitro and in vivo genotoxic endpoints were estimated by means of comet, micronucleus (MN), and chromosomal aberration (CA) assays. In vitro analysis was performed at the concentration range of 10–100 µg/mL using murine RAW 264.7 cells. In vivo experiments were conducted on Albino mice (M/F) by exposing them to 200 and 500 mg/kg TiO2-NPs for 90 days. Decreased percentage of cell viability with higher doses of TiO2-NPs was evident in both in vitro and in vivo flow cytometric analysis. Further, an impaired cell cycle (G0/G1, S, and G2/M) was reflected in the present investigation following the exposure to TiO2-NPs. Increased comet scores such as tail length, % DNA in tail, tail moment, and olive moment were also observed with the higher doses of TiO2-NPs in vitro and in vivo comet assays. Finally, the in vivo MN and CA assays revealed the formation of MN and chromosomal breakage following the exposure to TiO2-NPs.


NanoImpact ◽  
2020 ◽  
Vol 19 ◽  
pp. 100236
Author(s):  
Zhangjian Chen ◽  
Shuo Han ◽  
Di Zhou ◽  
Pai Zheng ◽  
Shupei Zhou ◽  
...  

Author(s):  
S. Kalyanasundaram ◽  
M. Jeevan Prakash

The recent development and implementation of new technologies have led to new era, the nanorevolution which unfolds role of plants in bio and green synthesis of nanoparticles which seem to have drawn quite an unequivocal attention with a view of synthesizing stable nanoparticles. In this present work, we have compared titanium dioxide nanocrystals synthesized by both chemical method and biological method from Titanium tetra isopropoxide as precursor. The biological method was performed by using the aqueous plant extract of Pithecellobium dulce and Lagenaria siceraria. The synthesized nanocrystals were characterized by FTIR Spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive Xray (EDAX), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD) techniques and also Antioxidant assay and antimicrobial test were performed to evaluate its biological behaviour. The nanocrystals synthesized by biological method were found to have higher antioxidant potential, antimicrobial activity than chemically synthesized.


2021 ◽  
Author(s):  
Jianhua Chen ◽  
Ziqi Jing ◽  
Xue Wang ◽  
Chu Li ◽  
Yanyi Li ◽  
...  

Abstract Background: Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and β-cell dysfunction, and accompanied by neuroendocrine disorders. Recently, Jiao-Tai-Wan (JTW) has been reported to exert hypoglycemic effects against diabetes. However, its mechanism has not been clarified. Therefore, we attempted to explore the effect of JTW on alleviating insulin resistance and lipid metabolism disorder in T2DM rats by regulating the level of neurotransmitters. Methods: Sprague-Dawley (SD) rats were treated with a high-fat diet/streptozotocin to induce T2DM and then gavaged with JTW for 4 weeks. Afterwards, endpoints including body weight, fasting blood glucose, glucose tolerance, serum insulin, and lipid index were determined, and we analyzed pathological changes in the liver and kidney. Meanwhile, the level of neurotransmitter neurotransmitters in the central nervous system and peripheral tissues was measured by UPLC-MS/MS. Furthermore, the expression of neurotransmitter transporter mRNA and protein levels in the brain and kidney of T2DM rats was analyzed by qRT-PCR and WB. Results: The results showed that JTW ameliorated glucose homeostasis, insulin resistance, and lipid metabolism in T2DM rats by regulating the disorder of neurotransmitter distribution in the brain, kidney, intestine, adrenal gland, blood, and urine of T2DM rats. Mechanically, JTW may improve neurotransmitter disturbance by reducing mRNA and protein expression of SERT, DAT, and GAT-1 and increasing mRNA and protein expression of NET in the brain and kidney of T2DM rats.Conclusion: Our findings confirm that JTW can play a hypoglycemic role by regulating the disorder level of neurotransmitter distribution in T2DM rats, which may have potential therapeutic implications for the treatment of T2DM.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Mojtaba Aalipourmohammadi ◽  
Abolfazl Davodiroknabadi ◽  
Ali Nazari

Abstract This study discusses the effect of corona pretreatment and subsequent loading of titanium dioxide nanoparticles on self-cleaning and antibacterial properties of cellulosic fabric. The corona-pretreated cellulosic fabrics were characterized by field emission scanning electron microscopy, and X-ray mapping techniques revealed that layers of the titania deposited on cellulose fibers were more uniform than the sample without pre-corona treatment. The self-cleaning property of treated fabrics was evaluated through discoloring dye stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that self-cleaning and antibacterial properties of the corona-pretreated fabrics were superior compared to the sample treated with TiO2 alone. Moreover, using corona pretreatment leads to samples with good washing fastness.


2021 ◽  
Vol 21 (9) ◽  
pp. 4586-4595
Author(s):  
Yun Wang ◽  
Zhangjian Chen ◽  
Shi Chen ◽  
Lin Zhuo ◽  
Lin Zhao ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) as food additives were widely found in various foodrelated products, especially in high-sugar foods. The daily intake of TiO2 NPs in the diet may therefore expose the small intestine to TiO2 NPs and affect its physiological functions, including the absorption of nutrients. It is speculated that TiO2 may cause serious health hazards by increasing sugar uptake. To explore this possibility, transport of glucose from small intestine was studied using an everted gut sac model prepared from small intestine of young healthy male SD rats. The translocation of TiO2 NPs and the morphological changes of small intestine were also observed after exposure of intestinal lumen to TiO2 NPs for 2 h. The results showed that TiO2 NPs can enter into enterocyte but hardly cross the intestinal epithelium. No change on microstructure of gut epithelia and expression of glucose transporter was found, and there is no obvious impact on intestinal absorption and metabolism of glucose. These results suggest that short-term exposure to TiO2 NPs has little influence on intestinal absorption of glucose. More attention should be paid to the chronic effect of dietary consumption of TiO2 NPs on nutrient absorption.


Sign in / Sign up

Export Citation Format

Share Document