scholarly journals Apigenin Alleviates Non-Alcoholic Fatty Liver Disease by Downregulating the NLRP3/NF-κB Signaling Pathway in Mice

Author(s):  
Zheng Lu ◽  
Lu Liu ◽  
Shunxin Zhao ◽  
Jiangtao Zhao ◽  
Sujun Li

Abstract Background: Apigenin, a flavone found in several plant foods with various biological properties including anti-inflammatory and other abilities, alleviated non-alcohol fatty liver disease (NAFLD) induced by a high fat diet (HFD) in mice. However, the mechanisms underlying this protection of inflammation and NAFLD has not been known clearly. Methods: Low density lipoprotein receptor-deficient (Ldlr-/-) mice were fed with HFD diet to induce NAFLD model and were treated with apigenin (50 mg/kg/day) for eight weeks. Hepatic lipid accumulation and inflammation in the livers were analyzed and quantified. In vitro experiments, HepG2 cells were stimulated by LPS plus oleic acid (OA) in the absence of presence of apigenin (50μM). Lipid accumulation and the effect of apigenin on NLRP3/NF-κB signaling pathway was investigated.Results: Apigenin administration reduce the weight, plasma lipid levels in Ldlr-/- mice when fed an HFD. Apigenin (50 mg/kg/day) treated mice displayed reduced hepatic lipid accumulation and inflammation in the livers of mice given the HFD diet. Treating the HepG2 cells with apigenin reduced lipid accumulation. And, apigenin also inhibited activation of NLRP3/NF-κB signaling pathway stimulated by OA together with LPS. Conclusions: Our results indicated that apigenin supplementation prevented NAFLD via down-regulating the NLRP3/NF-κB signaling pathway in mice, and suggested apigenin might be a potential therapeutic agent for the prevention of NAFLD.

Author(s):  
Ahmed Ayyash ◽  
Alison C Holloway

Fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor antidepressant, has been shown to increase hepatic lipid accumulation, a key factor in the development of non-alcoholic fatty liver disease. Interestingly, fluoxetine has also been reported to increase peripheral serotonin synthesis. As emerging evidence suggests that serotonin may be involved in the development of non-alcoholic fatty liver disease we sought to determine if fluoxetine-induced hepatic lipid accumulation is mediated via altered serotonin production. Fluoxetine treatment increased lipid accumulation in association with increased mRNA expression of tryptophan hydroxylase 1 (<i>Tph1, serotonin biosynthetic enzyme) and intracellular serotonin content. Serotonin alone had a similar effect to increase lipid accumulation. Moreover, blocking serotonin synthesis reversed the fluoxetine-induced increases in lipid accumulation. Collectively, these data suggest that fluoxetine induced lipid accumulation can be mediated, in part, by elevated serotonin production. These results suggest a potential therapeutic target to ameliorate the adverse metabolic effects of fluoxetine exposure.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1458
Author(s):  
Po-An Hu ◽  
Chia-Hui Chen ◽  
Bei-Chia Guo ◽  
Yu Ru Kou ◽  
Tzong-Shyuan Lee

We aimed to investigate the effect of bromelain, the extract from stems of pineapples on the high-fat diet (HFD)-induced deregulation of hepatic lipid metabolism and non-alcoholic fatty liver disease (NAFLD), and its underlying mechanism in mice. Mice were daily administrated with HFD with or without bromelain (20 mg/kg) for 12 weeks, and we found that bromelain decreased the HFD-induced increase in body weight by ~30%, organ weight by ~20% in liver weight and ~40% in white adipose tissue weight. Additionally, bromelain attenuated HFD-induced hyperlipidemia by decreasing the serum level of total cholesterol by ~15% and triglycerides level by ~25% in mice. Moreover, hepatic lipid accumulation, particularly that of total cholesterol, free cholesterol, triglycerides, fatty acids, and glycerol, was decreased by 15–30% with bromelain treatment. Mechanistically, these beneficial effects of bromelain on HFD-induced hyperlipidemia and hepatic lipid accumulation may be attributed to the decreased fatty acid uptake and cholesteryl ester synthesis and the increased lipoprotein internalization, bile acid metabolism, cholesterol clearance, the assembly and secretion of very low-density lipoprotein, and the β-oxidation of fatty acids by regulating the protein expression involved in the above mentioned hepatic metabolic pathways. Collectively, these findings suggest that bromelain has therapeutic value for treating NAFLD and metabolic diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zou ◽  
Zhengtang Qi

Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2244
Author(s):  
Martijn R. Molenaar ◽  
Louis C. Penning ◽  
J. Bernd Helms

Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).


2020 ◽  
Vol 56 (36) ◽  
pp. 4922-4925 ◽  
Author(s):  
Zhongyan Wang ◽  
Chuanrui Ma ◽  
Yuna Shang ◽  
Lijun Yang ◽  
Jing Zhang ◽  
...  

An ingenious co-assembled nanosystem based on fenofibrate and ketoprofen peptide for the dual-targeted treatment of NAFLD by reducing hepatic lipid accumulation and inflammatory responses.


2014 ◽  
Vol 5 (6) ◽  
pp. 1134-1141 ◽  
Author(s):  
Tianshun Zhang ◽  
Norio Yamamoto ◽  
Hitoshi Ashida

Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease.


Sign in / Sign up

Export Citation Format

Share Document