scholarly journals Impact of Vegetation Cover Structure on Birds' Community at Tianfu National Wetland Park in Jiangsu Kunshan, China

Author(s):  
Fathielrahaman. H. Ajloon ◽  
Dong Xie ◽  
Shao Junxue ◽  
Zhang RuiTing ◽  
Aniefiok Ini Inayng

Abstract Vegetation cover has an essential role in wetland habitats in controlling avian populations throughout the world. The vegetation cover structure in grassland systems varies dramatically among seasons on the same sites. Variation in vegetation cover-abundance richness and diversity has been studied through one hundred forty-seven quadrate samples during summer and autumn, 2019, winter, and spring 2020. Avian spe cies richness and diversity were recorded during the same period. Meanwhile, correlation analysis results confirmed that: (1) there was no apparent seasonal difference in the abundance of vegetation cover while avian abundance was statistically different. (2) Plant abundance in summer was positively correlated with the number of avian, while in autumn it was negatively correlated. Plant and avian abundance at the genus level showed a positive correlation while maintaining a negative correlation at the speci es level (p < 0.05). However, during summer and autumn, a strong linear relationship exists between vegetation coverage and avian. The Shannon diversity index and Simpson diversity index have a positive linear relationship between vegetation coverage and a vian families and genera. Therefore, we conclude that vegetation coverage and richness significantly impact avian communities. We suggest further research into the relationship between other biological communities and farming practices in the wetlands.

2021 ◽  
Author(s):  
Fathielrahaman H Ajloon ◽  
Dong Xie ◽  
Shao Junxue ◽  
Zhang RuiTing ◽  
Aniefiok Ini Inayng

Abstract Vegetation cover has an essential role in wetland habitats in controlling avian populations throughout the world. The vegetation cover structure in grassland systems varies dramatically among seasons on the same sites. Variation in vegetation cover-abundance richness and diversity has been studied through one hundred forty-seven quadrate samples during summer and autumn, 2019, winter, and spring 2020. Avian species richness and diversity were recorded during the same period. Meanwhile, correlation analysis results confirmed that: (1) there was no apparent seasonal difference in the abundance of vegetation cover while avian abundance was statistically different. (2) Plant abundance in summer was positively correlated with the number of avian, while in autumn it was negatively correlated. Plant and avian abundance at the genus level showed a positive correlation while maintaining a negative correlation at the species level (p < 0.05). However, during summer and autumn, a strong linear relationship exists between vegetation coverage and avian. The Shannon diversity index and Simpson diversity index have a positive linear relationship between vegetation coverage and avian families and genera. Therefore, we conclude that vegetation coverage and richness significantly impact avian communities. We suggest further research into the relationship between other biological communities and farming practices in the wetlands


2021 ◽  
Author(s):  
Fathielrahaman. H. Ajloon ◽  
Dong Xie ◽  
Shao Junxue ◽  
Zhang RuiTing ◽  
Aniefiok Ini Inayng

Abstract Background: Vegetation cover has an essential role in wetland habitats in controlling avian populations throughout the world. The vegetation cover structure in grassland systems varies dramatically among seasons on the same sites. Variation in vegetation cover-abundance richness and diversity has been studied through one hundred forty-seven quadrate samples during summer and autumn, 2019, winter, and spring 2020. Avian species richness and diversity were recorded during the same period. Results: The correlation analysis results confirmed that: (1) there was no apparent seasonal difference in the abundance of vegetation cover while avian abundance was statistically different. (2) Plant abundance in summer was positively correlated with the number of avian, while in autumn it was negatively correlated. Plant and avian abundance at the genus level showed a positive correlation while maintaining a negative correlation at the species level (p < 0.05). However, during summer and autumn, a strong linear relationship exists between vegetation coverage and avian. The Shannon diversity index and Simpson diversity index have a positive linear relationship between vegetation coverage and avian families and genera. Conclusions: We conclude that vegetation coverage richness significantly impact avian communities. We suggest further research into the relationship between other biological communities and farming practices in the wetlands.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1055
Author(s):  
Zekang Cai ◽  
Jian Wang ◽  
Yushuo Yang ◽  
Ran Zhang

Soil erosion is a major problem in the Loess Plateau (China); however, it can be alleviated through vegetation restoration. In this study, the overland flow on a slope during soil erosion was experimentally simulated using artificial grass as vegetation cover. Nine degrees of vegetation coverage and seven flow rates were tested in combinations along a 12° slope gradient. As the coverage degree increased, the water depth of the overland flow increased, but the flow velocity decreased. The resistance coefficient increased with increasing degree of coverage, especially after a certain point. The resistance coefficient and the Reynolds number had an inverse relationship. When the Reynolds number was relatively small, the resistance coefficient decreased faster; however, when it exceeded 600, the resistance coefficient decreased at a slower rate. A critical degree of vegetation cover was observed in the relationship between the resistance coefficient and submergence degree. When the degree of coverage was greater than 66.42%, the resistance coefficient first decreased and then increased with a higher submergence degree. Finally, the formula for the resistance coefficient under vegetation coverage was derived. This formula has a relatively high accuracy and can serve as a reference for predicting soil erosion.


2019 ◽  
pp. 33-40 ◽  
Author(s):  
Kathryn Wigley ◽  
Jennifer L. Owens ◽  
Matthias Westerschulte ◽  
Paul Riding ◽  
Jaco Fourie ◽  
...  

New tools are required to provide estimates of pasture biomass as current methods are time consuming and labour intensive. This proof-of-concept study tested the suitability of photogrammetry to estimate pasture height in a grazed dairy pasture. Images were obtained using a digital camera from one site on two separate occasions (May and June 2017). Photogrammetry-derived pasture height was estimated from digital surface models created using the photos. Pasture indices were also measured using two currently available methods: a Rising Plate Meter (RPM), and Normalised Difference Vegetation Index (NDVI). Empirical pasture biomass measurements were taken using destructive sampling after all other measurements were made, and were used to evaluate the accuracy of the estimates from each method. There was a strong linear relationship between photogrammetry-derived plant height and actual biomass (R2=0.92May and 0.78June) and between RPM and actual biomass (R2=0.91May and 0.78June). The relationship between NDVI and actual biomass was relatively weaker (R2=0.65May and 0.66June). Photogrammetry could be an efficient way to measure pasture biomass with an accuracy comparable to that of the RPM but further work is required to confirm these preliminary findings.


Author(s):  
Joseph Pryce ◽  
Lisa J Reimer

Abstract Background Molecular xenomonitoring (MX), the detection of pathogen DNA in mosquitoes, is a recommended approach to support lymphatic filariasis (LF) elimination efforts. Potential roles of MX include detecting presence of LF in communities and quantifying progress towards elimination of the disease. However, the relationship between MX results and human prevalence is poorly understood. Methods :We conducted a systematic review and meta-analysis from all previously conducted studies that reported the prevalence of filarial DNA in wild-caught mosquitoes (MX rate) and the corresponding prevalence of microfilaria (mf) in humans. We calculated a pooled estimate of MX sensitivity for detecting positive communities at a range of mf prevalence values and mosquito sample sizes. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. Results We identified 24 studies comprising 144 study communities. MX had an overall sensitivity of 98.3% (95% CI 41.5, 99.9%) and identified 28 positive communities that were negative in the mf survey. Low sensitivity in some studies was attributed to small mosquito sample sizes (&lt;1,000) and very low mf prevalence (&lt;0.25%). Human mf prevalence and mass drug administration status accounted for approximately half of the variation in MX rate (R 2 = 0.49, p&lt;0.001). Data from longitudinal studies showed that, within a given study area, there is a strong linear relationship between MX rate and mf prevalence (R 2 = 0.78, p &lt; 0.001). Conclusion MX shows clear potential as tool for detecting communities where LF is present and as a predictor of human mf prevalence.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1657
Author(s):  
Jingzhou Zhang ◽  
Shengtang Zhang ◽  
Si Chen ◽  
Ming Liu ◽  
Xuefeng Xu ◽  
...  

To explore the characteristics of overland flow resistance under the condition of sparse vegetative stem coverage and improve the basic theoretical research of overland flow, the resistance characteristics of overland flow were systematically investigated under four slope gradients (S), seven flow discharges (Q), and six degrees of vegetation coverage (Cr). The results show that the Manning roughness coefficient (n) changes with the ratio of water depth to vegetation height (h/hv) while the Reynolds number (Re), Froude number (Fr), and slope (S) are closely related to vegetation coverage. Meanwhile, h/hv, Re, and Cr have strong positive correlations with n, while Fr and S have strong negative correlations with n. Through data regression analysis, a power function relationship between n and hydraulic parameters was observed and sensitivity analysis was performed. It was concluded that the relationship between n and h/hv, Re, Cr, Q, and S shows the same law; in particular, for sparse stem vegetation coverage, Cr is the dominant factor affecting overland flow resistance under zero slope condition, while Cr is no longer the first dominant factor affecting overland flow resistance under non-zero slope condition. In the relationship between n and Fr, Cr has the least effect on overland flow resistance. This indicates that when Manning roughness coefficient is correlated with different hydraulic parameters, the same vegetation coverage has different effects on overland flow resistance. Therefore, it is necessary to study overland flow resistance under the condition of sparse stalk vegetation coverage.


2021 ◽  
pp. 1-12
Author(s):  
Omar Attum ◽  
Basem Rabia ◽  
Magdy El-Bana ◽  
Sherif Baha El Din

Abstract We studied the diet and vegetation composition of Egyptian tortoise, Testudo kleinmanni, habitat in North Sinai, Egypt. Dietary data was recorded through direct observations and the vegetation composition was recorded through the use of quadrats and line transects in 66 sampling points (33 in tortoise areas and 33 in non-tortoise areas). Our results showed that vegetation of Egyptian tortoise habitat had high species richness, Simpson’s diversity index, and vegetation cover in contrast to areas without Egyptian tortoises. These tortoises ate thirty four species of plants, a majority of these being perennials, with most feeding observations occurring in spring and winter. The consumption of perennials may enable Egyptian tortoises to find and consume food in an arid environment with low, variable and unpredictable rainfall. The plants most consumed were rare in our vegetation survey, suggesting food preferences. Our study suggests that Egyptian tortoises, which rely on vegetation for food and refugia, may suffer if vegetation cover and richness decrease.


1982 ◽  
Vol 14 (2) ◽  
pp. 43-49
Author(s):  
Stephen E. Miller

The literature of industrial organization is replete with analyses of the relationship between seller concentration and market performance. Most researchers have hypothesized a continuous linear relationship between profitability and concentration and have estimated that relationship accordingly.


Sign in / Sign up

Export Citation Format

Share Document