scholarly journals An optimized design method of three-point support for precision horizontal machining center with T-shape bed

Author(s):  
Zixin Lin ◽  
Wenjie Tian ◽  
Dawei Zhang ◽  
Weiguo Gao ◽  
Lina Wang

Abstract The support point layout of the machine tool has an important influence on the working performance of the machine tool, when the material, manufacturing process and internal structure of machine bed are determined. In order to ensure that the precision machine tool has good leveling performance, stability and anti-interference, this paper presents an optimized design method of three-point support for T-shape bed of precision horizontal machining center. This article first establishes the statics model of the T-shape bed and analyzes grillage beam model used to characterize the main static deformation trend of the bed based on the singular function method. After verifying the rationality of the model through simulation, the optimized three-point support position can be obtained. Then this paper measured the deformation of the upper surface of a simple bed due to gravity. The deviation between the experimental results and the simulation results is less than 20%, which verifies the reliability of the simulation and theoretical results. Based on the ISIGHT multi-disciplinary optimization platform, this paper completes the multi-objective optimization of the support point layout of the bed, and the optimization results prove the accuracy of the theoretical model. This paper takes the bed of M800H precision horizontal machining center as an example to illustrate the application process of the proposed method. Finally, this paper compares the optimization effect of the static characteristics of the bed and the whole machine. The maximum deformation of the bed has reduced by 27.1%. In the whole machine status, the deformation of the spindle end has reduced by 50.8%, and the maximum deformation of the workpiece end have reduced by 50.0%.

Author(s):  
Hanjun Gao ◽  
Jianfei Sun ◽  
Wuyi Chen ◽  
Yidu Zhang ◽  
Qiong Wu

Some biological structures, such as leaf veins, bamboo and animal bones, have excellent mechanical properties after millions of years evolution. By studying the distribution characteristics of biological structures, the performances of mechanical components can be improved using structural bionic design method. In this paper, the internal stiffening ribs of a machine tool column are rearranged based on the structure of leaf veins, and a bionic column is designed. Static and modal analysis of the conventional and bionic column is conducted to investigate the static and dynamic performances by finite element method. Then, static loading experiment and modal test are carried out for further verification. The simulation results have good agreement with the experiment results. Compared with the conventional column, the maximum deformation of the bionic column in experiment is reduced by 24.69%, and the first six-order natural frequencies of bionic column are increased by 48.39%, 12.98%, 10.70%, 5.11%, 3.07%, and 8.44%, respectively.


2021 ◽  
Vol 252 ◽  
pp. 02036
Author(s):  
Jianyong Liu ◽  
Yanhua Cai ◽  
Haifeng Zhang ◽  
Liantong Ding

For precision EDM equipment, in addition to the static stiffness of the body of the machine, the dynamic characteristics of the body and the ambient temperature are also the key factors that affect the machining accuracy of the workpieces. In this paper, through the modal simulation analysis of the machine tool that with the sheet metal shell, the weak points of the EDM machine tool are determined. Through thermal stress simulation analysis, the thermal deformation law of the workpieces mounting table is determined, and a solution to reduce thermal deformation is proposed. Through machine tool ODS (operating deflection shapes) test and analysis, the weak links of the machine tool's body in actual processing are determined. Through the above optimization analysis, the foundation has been laid for improving the dynamic and static accuracy of the precision machine tool. The research method in this paper makes up for the deficiency of the machine tool design method based on static stiffness.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2014 ◽  
Vol 607 ◽  
pp. 342-345
Author(s):  
Sheng Hui Zhao ◽  
Xiao Chuang Zhu ◽  
Da Wei Zhang

In order to meet the requirements of high-precision machine tool, it has been an important factor to select an appropriate way to support the bed. By building a multidisciplinary optimization (MDO) process based on iSIGHT, this article select the deformation difference of the guides and the deformation difference of the joint surface between column and bed of the machine tool as the objective functions, and then conduct a multi-objective optimization (MOO) of the positional parameters of the three-point support. Eventually the optimization result is given and the optimal position of the three-point support is determined.


2011 ◽  
Vol 418-420 ◽  
pp. 2055-2059 ◽  
Author(s):  
Yu Lin Wang ◽  
Na Jin ◽  
Kai Liao ◽  
Rui Jin Guo ◽  
Hu Tian Feng

The head frame is a key component which plays a supportive and accommodative role in the spindle system of CNC machine tool. Improving the static and dynamic characteristics has profound significance to the development of machine tool and product performance. The simplified finite element modal is established with ANSYS to carry out the static and modal analysis. The results showed that the maximum deformation of the head frame was 0.0066mm, the maximum stress was 3.94Mpa, the deformation of most region was no more than 0.0007mm, which all verified that the head frame had a good stiffness and deforming resistance; several improvement measures for dynamic performance were also proposed by analyzing the mode shapes, and the 1st order natural frequency increased 7.33% while the head frame mass only increased 1.58% applying the optimal measure, which improved the dynamic characteristics of the head frame effectively.


Author(s):  
Guo-Da Chen ◽  
Ya-Zhou Sun ◽  
Fei-Hu Zhang ◽  
Li-Hua Lu ◽  
Wan-Qun Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xinyu Quan ◽  
Ximing Zhao ◽  
Shijie Zhang ◽  
Jie Zhou ◽  
Nan Yu ◽  
...  

The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.


2021 ◽  
Vol 261 ◽  
pp. 03040
Author(s):  
Zhang Shiling

Equal margin design method based on the classic analytic formula is widely used in development of extra-high voltage bushing products, and its effectiveness and practicality have been fully validated. However, model and temperature factors have significant impact on internal E-field distribution of UHVAC and UHVDC bushing condenser, which traditional analytic formula is difficult to evaluate quantitatively, so it’s necessary to improve traditional equal margin design method. Firstly, basic principles of equal margin design method and its software package were briefly described, and the laws of model and temperature factors influencing on condenser E-field were investigated on FEM (finite element method) computing platform. Based on these, mathematical model of improved equal margin design method for bushing condenser was established, and flow chart of optimization process combining FEM electro-thermal coupling calculation with genetic algorithm was presented. The improved method was applied to design of UHV RIP oil-gas prototype to realize uniform axial E-field distribution along bushing condenser and equal partial discharge margin between adjacent foils. Bushing condenser was fabricated according to above optimized design structure, and has passed all type tests. In the paper, the FEM electro-thermal coupling calculation method was applied to the inner insulation optimization design to make bushing condenser’s design more suitable. The paper can provide some theoretical guidelines for research and development of other bushings in UHV level.


Sign in / Sign up

Export Citation Format

Share Document