scholarly journals Enormous thermoelectric power factor of ZrTe2/SrTiO3 heterostructure

2021 ◽  
Author(s):  
Chun Hung Suen ◽  
Songhua Cai ◽  
Hui Li ◽  
Xiaodan Tang ◽  
Huichao Wang ◽  
...  

Abstract Achieving high thermoelectric power factor in thin film heterostructures is essential for integrated and miniaturized thermoelectric device applications. In this work, we demonstrate a mechanism to enhance thermoelectric power factor through coupling the interfacial confined two-dimensional electron gas (2DEG) with thin film conductivity in a transition metal dichalcogenides-SrTiO3 heterostructure. Owing to the formed conductive interface with two-dimensional electron confinement effect and the elevated conductivity, the ZrTe2/SrTiO3 (STO) heterostructure presents enormous thermoelectric power factor as high as 4×10^5 μW cm^(-1) K^(-2) at 20 K and 4800 μW cm^(-1) K^(-2) at room temperature. Interfacial reaction induced degradation of Ti cations valence number from Ti4+ to Ti3+ is attributed to be responsible for the formation of the quasi-two-dimensional electrons at the interface which results in very large Seebeck coefficient; and the enhanced electrical conductivity is suggested to be originated from the charge transfer induced doping in the ZrTe2. By taking the thermal conductivity of STO substrate as a reference, the effective zT value of this heterostructure can reach 15 at 300 K. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device, and more importantly, paves a new pathway to design promising high-performance thermoelectric systems.

2021 ◽  
Author(s):  
Chun Hung Suen ◽  
Songhua Cai ◽  
Hui Li ◽  
Long Zhang ◽  
Kunya Yang ◽  
...  

Abstract Achieving high thermoelectric power factor in thin film heterostructures is essential for integrated and miniatured thermoelectric device applications. In this work, we demonstrate a mechanism and device performance of enhanced thermoelectric power factor through coupling the interfacial confined two-dimensional electron gas (2DEG) with thin film conductivity in a transition metal dichalcogenides-SrTiO3 heterostructure. Owing to the formed conductive interface with two-dimensional electron confinement effect and the elevated conductivity, the ZrTe2/SrTiO3 (STO) heterostructure presents enormous thermoelectric power factor as high as 4×10^5 μW/cmK^2 at 20 K and 4800 μW/cmK^2 at room temperature. Formation of quasi-two-dimensional electrons gas at the interface is attributed to the giant Seebeck coefficient, and enhanced electrical conductivity is suggested to be originated from charge transfer induced doping in the ZrTe2, which leads to extremely large thermoelectric power factor. By taking the thermal conductivity of STO substrate as a reference, the effective zT value of this heterostructure can reach 1.5 at 300 K. This high thermoelectric figure of merit is demonstrated by a prototype device based on this heterostructure which results in 3K temperature cooling by passing through a current of 100 mA. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device, and more importantly, paves a new pathway to design promising high-performance thermoelectric systems.


Author(s):  
Tianshi Zhao ◽  
Chenguang Liu ◽  
Chun Zhao ◽  
Wangying Xu ◽  
Yina Liu ◽  
...  

MXenes are a large class of two-dimensional (2D) materials widely studied recently since they have good water solubility and be able to tune the work function (WF) of the materials...


Nano Letters ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 3770-3776 ◽  
Author(s):  
Ananth Saran Yalamarthy ◽  
Miguel Muñoz Rojo ◽  
Alexandra Bruefach ◽  
Derrick Boone ◽  
Karen M. Dowling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document