scholarly journals Finding Optimal Nutrients With Farming Techniques to influence Maize Productivity, and Mitigate Global Warming Potential Under Water-saving Agriculture in Semi-arid Regions

Author(s):  
Tiejun Zhang ◽  
yueling xi ◽  
Xiengchang Ma

Abstract Background and aims: Effective nutrients management under various farming techniques is critical for improving maize productivity and ensuring the long-term protection of water-saving agriculture under semi-arid regions. However, the impacts have not been well documented in determining the features of soil greenhouse gas intensity (GHGI) emissions and the driving factors of nutrients fertilization is important for optimizing crop-land nutrients management under various farming techniques.Methods: The nutrients with farming techniques strategies were investigated under water-saving agriculture of maize during 2019-20 years, using the following nine treatments: BF: ridges covered with biodegradable film; CF: soil crust ridges; TF: conventional flat planting; 0: N:P at 0:0 kg ha-1, 1: N:P at 120:60 kg ha-1, 2: N:P at 280:140 kg ha-1. Results: Our results showed that the nutrients fertilization with various cultivation strategies had a significant influence on the GHG emissions. The BF2 treatment considerably increase soil water storage, soil respiration rate as a result of decreased ET rate and GHG emissions compared with the other treatments. The BF1 treatment significantly mitigated GWP, CH4, N2O, and CO2 emissions, changes in CH4, N2O, and CO2 cumulative emissions. The GHGI differently responded to nutrients with farming techniques strategies. Under the BF2 improved (25.0%) the average net GWP than that of TF2, but reduced GHGI, due to improved (18.5%) biomass productivity. The BF2 and BF1 farming methods results in greater N2O, CO2 emissions, GWP, and changes in cumulative CH4, N2O, and CO2 emissions, as a result, have an adverse effect on the soil than that of CF and TF treatments. Conclusions: However, obtained the higher area-scaled GWP (42.1%), WUEg (96.7%), WUEb (65.4%), and (41.1%) grain yield under the BF2 which may offset the negative environmental effects linked with climate change. Thus, it is recommended to use the BF2 treatment in water-saving agriculture under semi-arid regions for cleaner and more efficient maize production.

Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ranjini Ray ◽  
Atreyee Bhattacharya ◽  
Gaurav Arora ◽  
Kushank Bajaj ◽  
Keyle Horton ◽  
...  

AbstractUsing information contained in the eighteenth to twentieth century British administrative documents, preserved in the National Archives of India (NAI), we present a 218-year (1729–1947 AD) record of socioeconomic disruptions and human impacts (famines) associated with ‘rain failures’ that affected the semi-arid regions (SARs) of southern India. By mapping the southern Indian famine record onto long-term spatiotemporal measures of regional rainfall variability, we demonstrate that the SARs of southern India repeatedly experienced famines when annual rainfall reduced by ~ one standard deviation (1 SD), or more, from long-term averages. In other words, ‘rain failures’ listed in the colonial documents as causes of extreme socioeconomic disruptions, food shortages and human distress (famines) in the southern Indian SARs were fluctuations in precipitation well within the normal range of regional rainfall variability and not extreme rainfall deficits (≥ 3 SD). Our study demonstrates that extreme climate events were not necessary conditions for extreme socioeconomic disruptions and human impacts rendered by the colonial era famines in peninsular India. Based on our findings, we suggest that climate change risk assessement should consider the potential impacts of more frequent low-level anomalies (e.g. 1 SD) in drought prone semi-arid regions.


2020 ◽  
Vol 200 ◽  
pp. 104636 ◽  
Author(s):  
Qianmin Jia ◽  
Liye Yang ◽  
Haoyun An ◽  
Shan Dong ◽  
Shenghua Chang ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2789
Author(s):  
Somayeh Shadkam ◽  
Pieter van Oel ◽  
Pavel Kabat ◽  
Amin Roozbahani ◽  
Fulco Ludwig

Increases in water demand often result in unsustainable water use, leaving insufficient amounts of water for the environment. Therefore, water-saving strategies have been introduced to the environmental policy agenda in many (semi)-arid regions. As many such interventions failed to reach their objectives, a comprehensive tool is needed to assess them. We introduced a constructive framework to assess the proposed strategies by estimating five key components of the water balance in an area: (1) Demand; (2) Availability; (3) Withdrawal; (4) Depletion and (5) Outflow. The framework was applied to assess the Urmia Lake Restoration Program (ULRP) which aimed to increase the basin outflow to the lake to reach 3.1 × 109 m3 yr−1. Results suggested that ULRP could help to increase the Outflow by up to 57%. However, successful implementation of the ULRP was foreseen to be impeded because of three main reasons: (i) decreasing return flows; (ii) increased Depletion; (iii) the impact of climate change. Decreasing return flows and increasing Depletion were expected due to the introduction of technologies that increase irrigation efficiency, while climate change could decrease future water availability by an estimated 3–15%. We suggest that to reach the intervention target, strategies need to focus on reducing water depletion rather than water withdrawals. The framework can be used to comprehensively assess water-saving strategies, particularly in water-stressed basins.


2020 ◽  
Author(s):  
Harrington Nyirenda ◽  
Wantwa Mwangomba ◽  
Ellen M. Nyirenda

AbstractMaize production, area and yield dynamics were assessed based on farmer perceptions and production data from 2004/05-2018/19 using 36 000 households in Salima, central Malawi. The results showed that farmers used 16, six and two varieties for hybrid, Open-pollinated varieties (OPV) and local maize respectively. Farmers sourced Hybrid and OPV maize seed from Private Agro dealers while local maize was own-sourced. Farmers preferred local maize for being cheap, good taste, low storage costs, and pest resistance although low yielding. They preferred hybrid and OPV maize for high yielding and early maturity despite demanding high storage costs, pest susceptibility, and low flour. From 2004/05-2018/19, the area under local and OPV maize reduced by 61% and 12% respectively, while that of hybrid maize increased by 49%. However, the consistent decrease in area for hybrid and OPV and significant increase of that of local maize from 2014/15-2018/19 may signal a catastrophic maize production in the region. From 2019/20-2025/26 production of all maize was projected at 44 172 tons by 2025/26, representing a 1.6% increase from the base year 2019/20. This increase will be due to favorable climatic conditions and not increase in area or yield. If maize yield was improved by 30% production would increase to 110 430 tons representing 67% of the food requirement in the study area. The current maize production trend in Salima does not guarantee food security prospects. Therefore, policymakers should consider reviewing the past interventions (input pricing, promotion strategies, sustainable practices, policies) in the maize subsector to enhance maize productivity.


Author(s):  
Adriana Príncipe ◽  
Alice Nunes ◽  
Pedro Pinho ◽  
Lúcio do Rosário ◽  
Otília Correia ◽  
...  

2012 ◽  
Vol 7 (No. 1) ◽  
pp. 36-44 ◽  
Author(s):  
S. Kanzari ◽  
M. Hachicha ◽  
R. Bouhlila ◽  
J. Battle-Sales

Arid and semi-arid regions face the risk of soils and aquifers salinization. Rainy events are rare which is characteristic of these regions. They play a significant role in the leaching of salts from topsoil to deeper layers, which increases the risk of aquifers salinization. For this reason, a plot was selected in the semi-arid region of Bou Hajla (Central Tunisia). The simulation of water and salts dynamics was carried out by Hydrus-1D. Model calibration was realised on a flood irrigation experiment during 10 days and in a depth of 4 m. The hydrodynamic parameters were determined by inverse modelling. Model validation was performed successfully during 577 days. The simulation of water and salts dynamics has allowed the analysis of two scenarios: (i) the effect of a very rainy event (> 50mm/day) on the dynamics of salts. This type of event allows leaching of the accumulated salts in the topsoil which promotes their burial in the depth; (ii) the long-term evolution of the saline profile in 20 years showed the cyclical nature of salts leaching in the topsoil, the permanent accumulation of salts in the depth of around 2 m, and a continuous leaching in the deeper layers (around 4 m), which may increase groundwater contamination risk.


Sign in / Sign up

Export Citation Format

Share Document