scholarly journals Restoration of the GTPase activity of Gαo mutants by Zn2+ in GNAO1 encephalopathy models

Author(s):  
Vladimir Katanaev ◽  
Yonika Larasati ◽  
Mikhail Savitsky ◽  
Alexey Koval ◽  
Gonzalo Solis

Abstract GNAO1 encephalopathy is a rare pediatric disease characterized by motor dysfunction, developmental delay, and epileptic seizures1-3. De novo point mutations in the gene encoding Gαo, the major neuronal G protein, lie at the core of this dominant genetic malady4. Half of the clinical case mutations fall on codons Gly203, Arg209, or Glu246 near the GTP binding/hydrolysis pocket of Gαo1-3. We here show that these pathologic mutations strongly speed up GTP uptake and inactivate GTP hydrolysis by Gαo, resulting in constitutive GTP binding by the G protein. Molecular dynamics simulations indicate that the mutations cause displacement of Gln205, the key to GTP hydrolysis. Decreased interactions with cellular partners including RGS19 suggest that despite the enhanced GTP residence, the mutants fail to fully adopt the activated conformation and thus transmit the signal. Through a high-throughput screening of approved drugs aiming at correction of this core biochemical dysfunction, we identify zinc pyrithione and Zn2+ ions as agents restoring the active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with a negligible effect on wild type Gαo. We describe a Drosophila model of GNAO1 encephalopathy and show that dietary zinc supplementation restores the motor function and longevity of the mutant flies. With zinc supplements frequently recommended for diverse human neurological conditions, our work spanning from identification of the core biochemical defect in Gαo mutants and cellular interactions analysis to high-throughput screening and animal validation of the deficiency-correcting drug defines the potential therapy for GNAO1 encephalopathy patients.

2017 ◽  
Author(s):  
Aparna Mohanakrishnan ◽  
Triet Vincent M. Tran ◽  
Meera Kumar ◽  
Hong Chen ◽  
Bruce A. Posner ◽  
...  

AbstractClathrin-mediated endocytosis is the major pathway by which cells internalize materials from the external environment. Dynamin, a large multidomain GTPase, is a key regulator of clathrin-mediated endocytosis. It assembles at the necks of invaginated clathrin-coated pits and, through GTP hydrolysis, catalyzes scission and release of clathrin-coated vesicles from the plasma membrane. Several small molecule inhibitors of dynamin’s GTPase activity, such as Dynasore and Dyngo-4a, are currently available, although their specificity has been brought into question. Previous screens for these inhibitors measured dynamin’s stimulated GTPase activity due to lack of sufficient sensitivity, hence the mechanisms by which they inhibit dynamin are uncertain. We report a highly sensitive fluorescence-based assay capable of detecting dynamin’s basal GTPase activity under conditions compatible with high throughput screening. Utilizing this optimized assay, we conducted a pilot screen of 8000 compounds and identified several “hits” that inhibit the basal GTPase activity of dynamin-1. Subsequent dose-response curves were used to validate the activity of these compounds. Interestingly, we found neither Dynasore nor Dyngo-4a inhibited dynamin’s basal GTPase activity, although both inhibit assembly-stimulated GTPase activity. This assay provides the basis for a more extensive search for robust dynamin inhibitors.


2019 ◽  
Vol 24 (5) ◽  
pp. 597-605 ◽  
Author(s):  
John Veloria ◽  
Minhye Shin ◽  
Ashwini K. Devkota ◽  
Shelley M. Payne ◽  
Eun Jeong Cho ◽  
...  

Iron is an essential requirement for the survival and virulence for bacteria. The bacterial ferrous iron transporter protein B (FeoB) functions as a major iron transporter in prokaryotes and has an N-terminal domain (NFeoB) with homology to eukaryotic G-proteins. Its GTPase activity is required for ferrous iron uptake, making it a potential target for antivirulence therapies. Here, two assay strategies relying on different spectroscopic readouts are described to monitor NFeoB GTPase activity. The first one is the colorimetric-based platform that utilizes a malachite green reagent to monitor phosphate production from GTP hydrolysis. The absorbance change directly relates to the GTPase activity of NFeoB. The assay was further improved by the addition of Tween-20 and miniaturized in a 384-well plate format with a 10 µL assay volume. The second format is a luminescence-based platform, measuring the GTP depletion by using a modified GTPase-Glo assay from Promega. In this platform, the luminescence signal correlates to the amount of GTP remaining, allowing for the direct calculation of GTP hydrolysis by NFeoB. The colorimetric platform was tested in a high-throughput manner against a custom-assembled library of a~2000 small molecules and was found to be simple, cost-effective, and robust. Additionally, the luminescence-based platform demonstrated its capability as an orthogonal assay to monitor GTPase activity, providing a valid and convenient method to filter false hits. These two assay platforms are proven to offset the limitations of each platform while enhancing overall quality and success rates.


2019 ◽  
Vol 47 (19) ◽  
pp. 10452-10463 ◽  
Author(s):  
Xiangyang Liu ◽  
Sanjan T P Gupta ◽  
Devesh Bhimsaria ◽  
Jennifer L Reed ◽  
José A Rodríguez-Martínez ◽  
...  

Abstract Ligand-responsive allosteric transcription factors (aTF) play a vital role in genetic circuits and high-throughput screening because they transduce biochemical signals into gene expression changes. Programmable control of gene expression from aTF-regulated promoter is important because different downstream effector genes function optimally at different expression levels. However, tuning gene expression of native promoters is difficult due to complex layers of homeostatic regulation encoded within them. We engineered synthetic promoters de novo by embedding operator sites with varying affinities and radically reshaped binding preferences within a minimal, constitutive Escherichia coli promoter. Multiplexed cell-based screening of promoters for three TetR-like aTFs generated with this approach gave rich diversity of gene expression levels, dynamic ranges and ligand sensitivities and were 50- to 100-fold more active over their respective native promoters. Machine learning on our dataset revealed that relative position of the core motif and bases flanking the core motif play an important role in modulating induction response. Our generalized approach yields customizable and programmable aTF-regulated promoters for engineering cellular pathways and enables the discovery of new small molecule biosensors.


1998 ◽  
Vol 25 (5) ◽  
pp. 539 ◽  
Author(s):  
Helen R. Irving

Since receptor-coupled G proteins increase GTP hydrolysis (GTPase) activity upon ligands binding to the receptor, a study was undertaken to determine if abscisic acid (ABA) induced such an effect. Plasma membranes isolated from etiolated maize (Zea mays L.) coleoptiles were enriched in GTPase activity relative to microsomal fractions. Vanadate was included in the assay to inhibit the high levels of vanadate sensitive low affinity GTPases present. Under these conditions, GTPase activity was enhanced by Mg2+, stimulated by mastoparan, and inhibited by GTPγS indicating the presence of either monomeric or heterotrimeric G proteins. The combination of NaF and AlCl3 is expected to inhibit heterotrimeric G protein activity but had little effect on GTPase activity in maize coleoptile membranes. Cholera toxin enhanced basal GTPase activity, confirming the presence of heterotrimeric G proteins in maize plasma membranes. Pertussis toxin also slightly enhanced basal GTPase activity in maize membranes. Abscisic acid enhanced GTPase activity optimally at 5 mmol/L Mg2+ in a concentration dependent manner by 1.5-fold at 10 µmol/L and up to three-fold at 100 µmol/L ABA. Abscisic acid induced GTPase activity was inhibited by GTPγS, the combination of NaF and AlCl3, and pertussis toxin. Overall, these results are typical of a receptor-coupled G protein responding to its ligand.


1999 ◽  
Vol 4 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Ilona Kariv ◽  
Michelle E. Stevens ◽  
Davette L. Behrens ◽  
Kevin R. Oldenburg

Impairment of G protein—coupled seven-transmembrane (7 TM) receptor function has been implicated in a variety of different pathologic conditions, suggesting that the discovery of specific antagonists may lead to the development of successful therapeutic agents. The effect of different agents on receptor-ligand interaction is often measured directly in a receptor binding assay; however, this assay format can be time consuming and does not detect agents that interact at sites distal to the native ligand binding site. Cyclic adenosine monophospate (cAMP) represents a ubiquitous second messenger generated in response to ligand binding to many 7 TM receptors. The present study describes the practical adaptation of scintillation proximity methodology, using FlashPlate™ (NEN Life Sciences, Boston, MA) technology to evaluate cAMP production. The bioassay is based on competition between endogenously produced cAMP and exogenously added radiolabeled [125I]-cAMP. Cyclic AMP capture is mediated through an anti-cAMP antibody onto a microplate well surface. Removal of unbound radioligand is not necessary because only ligand within ≤20 μm of the plate surface is detected due to the proximity effect. The data indicate that the use of scintillation proximity technology allows accurate and specific evaluation of G protein—coupled receptor function as measured by cAMP production and is suitable for high throughput screening.


2005 ◽  
Vol 280 (23) ◽  
pp. 21847-21853 ◽  
Author(s):  
Jeffrey Baldwin ◽  
Carolyn H. Michnoff ◽  
Nicholas A. Malmquist ◽  
John White ◽  
Michael G. Roth ◽  
...  

Plasmodium falciparum is the causative agent of the most serious and fatal malarial infections, and it has developed resistance to commonly employed chemotherapeutics. The de novo pyrimidine biosynthesis enzymes offer potential as targets for drug design, because, unlike the host, the parasite does not have pyrimidine salvage pathways. Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme that catalyzes the fourth reaction in this essential pathway. Coenzyme Q (CoQ) is utilized as the oxidant. Potent and species-selective inhibitors of malarial DHODH were identified by high-throughput screening of a chemical library, which contained 220,000 drug-like molecules. These novel inhibitors represent a diverse range of chemical scaffolds, including a series of halogenated phenyl benzamide/naphthamides and urea-based compounds containing napthyl or quinolinyl substituents. Inhibitors in these classes with IC50 values below 600 nm were purified by high pressure liquid chromatography, characterized by mass spectroscopy, and subjected to kinetic analysis against the parasite and human enzymes. The most active compound is a competitive inhibitor of CoQ with an IC50 against malarial DHODH of 16 nm, and it is 12,500-fold less active against the human enzyme. Site-directed mutagenesis of residues in the CoQ-binding site significantly reduced inhibitor potency. The structural basis for the species selective enzyme inhibition is explained by the variable amino acid sequence in this binding site, making DHODH a particularly strong candidate for the development of new anti-malarial compounds.


2008 ◽  
Vol 13 (8) ◽  
pp. 737-747 ◽  
Author(s):  
Xiaoning Zhao ◽  
Adrie Jones ◽  
Keith R. Olson ◽  
Kun Peng ◽  
Tom Wehrman ◽  
...  

G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between β-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (~4 kDa), optimized α fragment peptide (termed ProLink™) derived from β-galactosidase, and β-arrestin is fused to an N-terminal deletion mutant of β-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the β-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active β-galactosidase enzyme, and thus GPCR activation can be determined by quantifying β-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Gαi-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified. ( Journal of Biomolecular Screening 2008:737-747)


Sign in / Sign up

Export Citation Format

Share Document